Epigenetic Approaches to Neurodevelopmental Disorders

Andrew Feinberg

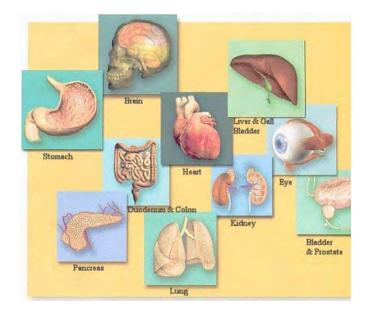
Plan for this talk

- Gedanken experiment: why epigenetics must be important in neurodevelopment
- CHARM: what is the nature of normal and abnormal DNA methylation in the genome?
- How does one apply high throughput epigenetics to the epidemiology of neurodevelopmental disorders?

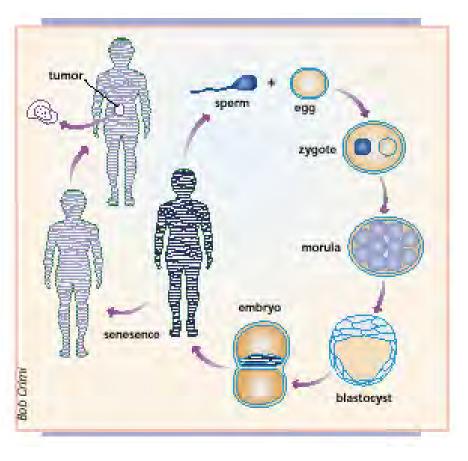
Gedanken Experiment: Why DNA methylation must be important

- Schroedinger's cat
- Maxwell's demon

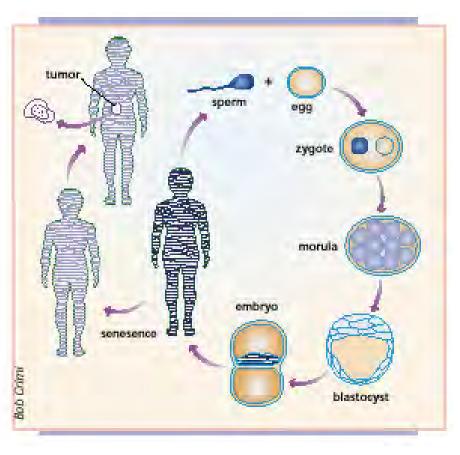
Gedanken Experiment


- Schroedinger's cat
- Maxwell's demon
- The United States Congress
- What makes them different?

3 billion base pairs of DNA 300,000 to 1,000,000 differences in DNA sequence

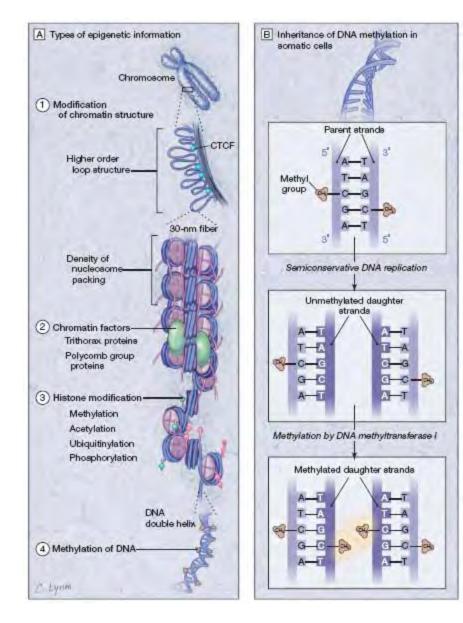

Gedanken Experiment

- Schroedinger's cat
- Maxwell's demon
- United States
 Congress
- Brain vs. heart vs. pancreas vs. eye

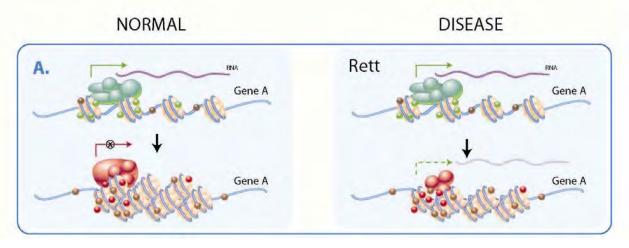

Far more different than the Congress 3 billion base pairs of DNA 0 differences in DNA sequence

Epigenetics has a life cycle, while the DNA sequence does not

Modifications of DNA or associated factors, that have information content and are maintained during cell division, other than the primary DNA sequence


Epigenetics has a life cycle, while the DNA sequence does not

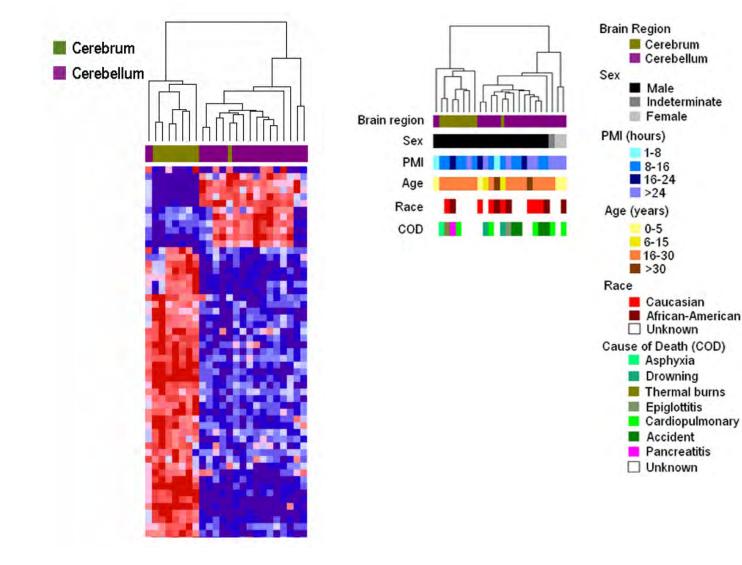
Epigenetic marks distinguish:


- Stem cells
- Tissue types
- Aging
- Cancer

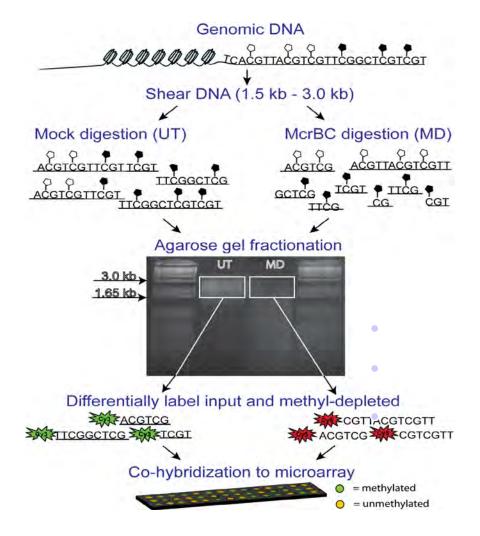
Types of epigenetic information

Disrupted epigenetics alters phenotypic plasticity Rett syndrome = MeCP2 deficiency

Rett syndrome is a childhood neurodevelopmental disorder characterized by normal early development followed by loss of purposeful use of the hands, distinctive hand movements, slowed brain and head growth, gait abnormalities, seizures, and mental retardation. It affects females almost exclusively. --NINDS

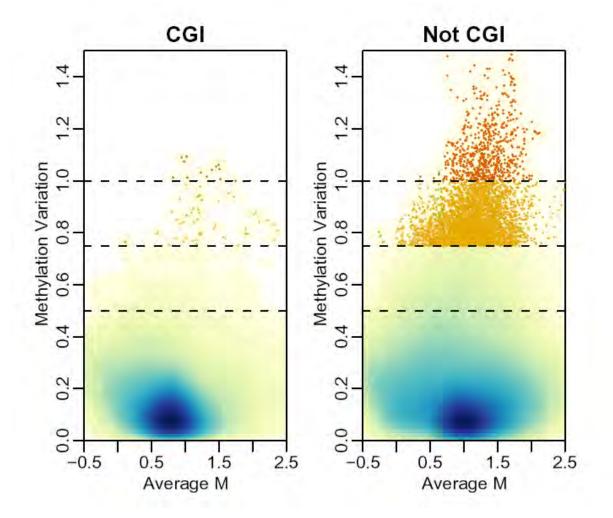


A failure to maintain and continue developmental modification (silencing)

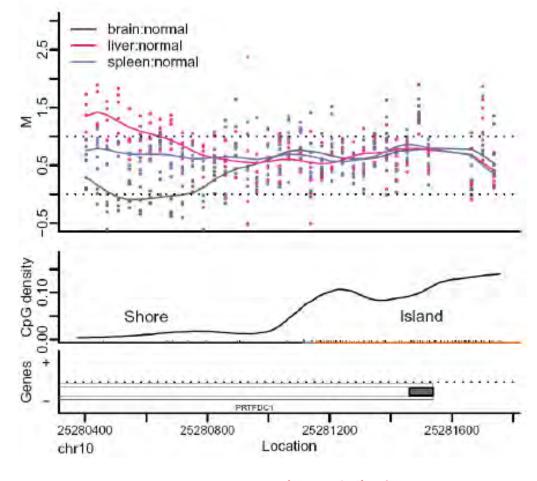

Centrality of DNA Methylation

- Stable semi-permanent mark
 - Practical for human genetic studies
- Known mechanism for its propagation
 - DNA methyltransferase I is a Turing machine
 - No Turing machine yet for chromatin
- We need to assess DNA methylation genome-wide, cheaply, with high precision
 - Not with pre-existing methods
 - Previous assumption: "CpG islands" target of development and disease such as cancer
 - But is that true? Nobody ever checked.

Does DNA methylation map the mind? 1500 "random" CpGs are as good as Ramon y Cajal

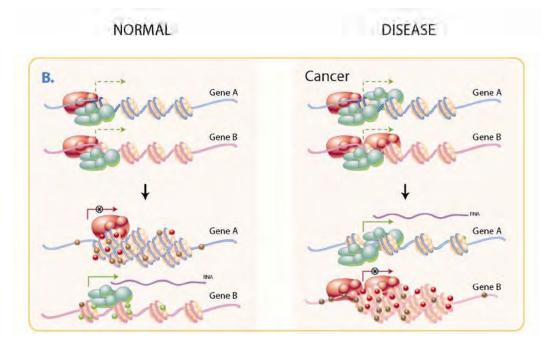


CHARM (Comprehensive high-throughput arrays for relative methylation) What is the comprehensive map of normal and abnormal DNA methylation in the genome?

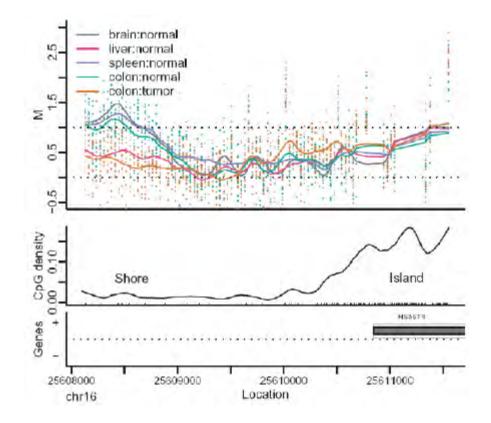


- ~ 4 million CpG sites measured
- Sensitive and specific
- Unbiased with respect to genomic region examined
- Includes all high-density "CpG islands" previously studied
- Also includes lower CpG regions not previously studied

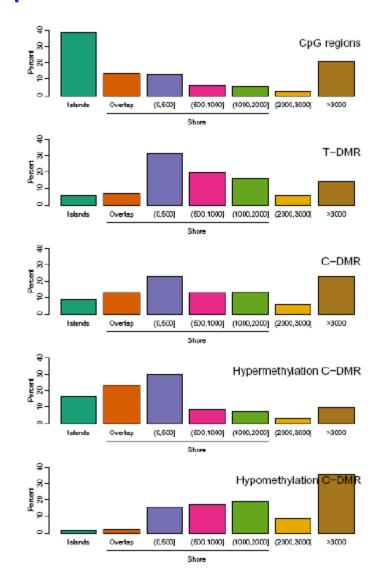
Most methylation variation is outside CpG islands



Where is normal DNA methylation?

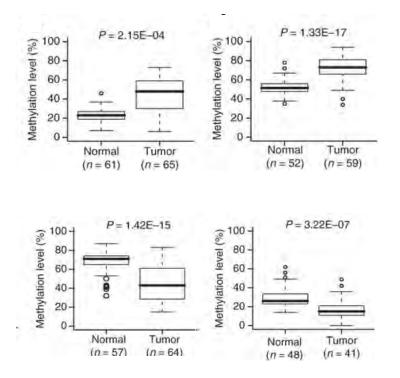

• At CpG island "shores"

Epigenetic disease disrupts phenotypic plasticity Complex trait: cancer


- Hypomethylation of many oncogenes
- Hypermethylation of many tumor suppressor genes
- Paradigm test of CHARM: Where is normal DNA methylation, and abnormal methylation in cancer?

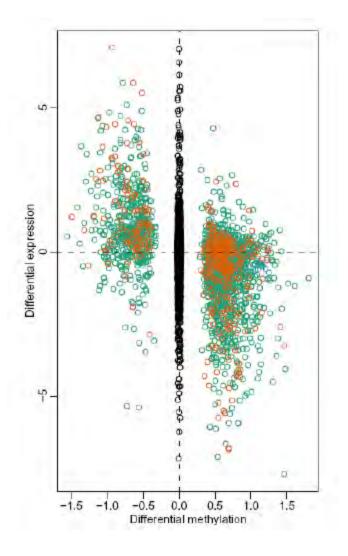
Where is cancer DNA methylation?

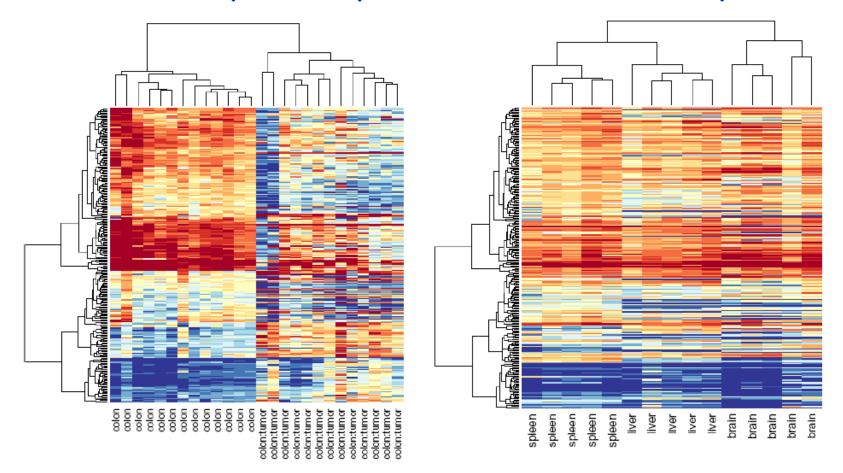
- At CpG island shores, same ones as in tissues
- Acquires an aberrant pattern of tissue methylation


Relationship between C-DMRs and T-DMRs

Validation of CpG island shores

Gene	Location ^a	Region	Tissue ^b	CG1	CG2	CG3	CG4	CG5	CG6	CG7	CG8	CG9	CG10	CG11	CG12	CG13	CG14	CG15	CG16	CG17	CG18
PCDH9	+3,338	Shore	Brain Spleen P value	32 91 <.001	26 71 <.001	12 31 <.001	39 76 <.001	19 66 <.001	22 60 0.003												
	-267	Island	Brain Spleen P value	2 2 0.032	3 3 0.298	4 3 0.336	2 2 0.108	3 3 0.475	5 6 0.150	2 2 0.393	3 4 0.141	2 3 0.011	3 3 0.661	3 3 0.265	3 3 0.208	5 3 0.420	5 5 0.051	4 4 0.133	3 3 0.885	3 4 0.783	4 3 0.270
HEYI	+3,381	Shore	Brain Liver P value	54 70 .023	53 84 <.001	51 87 <.001	51 71 <.007														
	+2,207	Island	Brain Liver P value	4 3 0.349	7 6 0.309	3 3 0.226	4 4 0.460	4 4 0.630	5 6 0.252	1 2 0.017	8 9 0.336	5 23 0.255	5 26 0.179	7 26 0.238	7 8 0.432	4 8 0.001					
HAGH	+2,192	Shore	Liver Spleen P value	26 93 <.001	30 93 <.001	22 82 <.001	18 56 <.001	7 20 <.001	6 20 <.001	23 86 0.017	33 95 0.017										
	+206	Island	Liver Spleen P value	2 2 0.608	1 2 0.207	2 3 0.433	3 4 0.803	2 2 0.058	7 2 0.342	3 2 0.262	2 2 0.529	3 4 0.504	1 1 0.782	2 4 0.060	2 2 0.832	1 2 0.366	1 3 0.074	1 2 0.307	2 4 0.073	1 1 0.141	4 8 0.015
SLMO2	+1,125	Shore	Normal Tumor P value	89 37 <.001	63 28 <.001	85 34 <.001	46 19 0.005	68 30 0.002	30 13 <.001	78 34 <.001	81 40 <.001	75 35 0.002	82 36 <.001	40 18 0.036	85 38 <.001	81 36 <.001	43 19 <.001	65 30 <.001	76 39 <.001	76 37 0.003	87 46 <.001
	+40	Island	Normal Tumor P value	4 4 0.619	2 1 0.233	3 3 0.293	3 3 0.546	6 3 0.302	4 4 0.364	3 3 0.461	2 2 0.204	3 2 0.586	2 4 0.263	3 3 0.173	3 2 0.369	4 4 0.253	2 2 0.928	7 7 0.230	5 6 0.509		


Bisulfite pyrosequencing validation in >50 tumor-normal pairs


hypermethylation

hypomethylation

Methylation of DMRs functional

Cancer methylation predicts tissue methylation

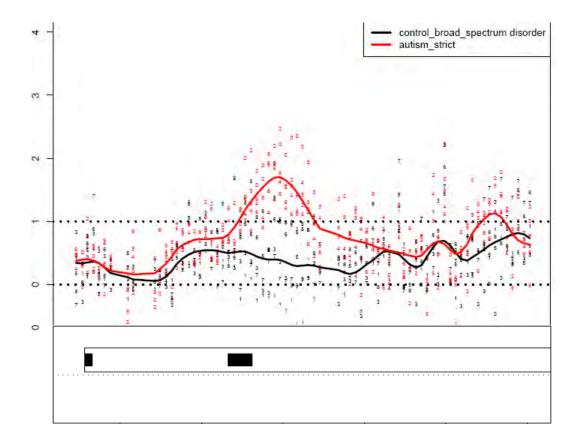


Furteanizativitation katting and the later a

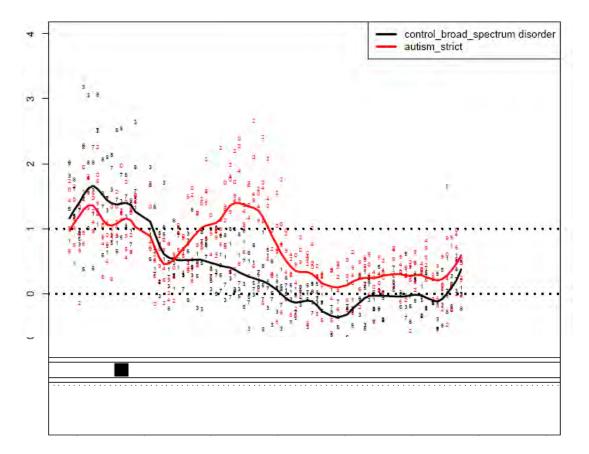
Same DMRs involved in neural differentiation

Same DMRs involved in neural differentiation

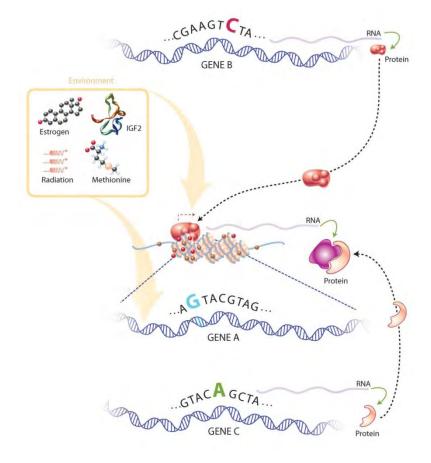
How do we approach epigenetic epidemiology?


- Major studies in our Center
 - Autism
 - Bipolar disorder
 - Major depression
 - Schizophrenia
 - Endophenotypes
 - First degree relatives
- Newborn epigenome
 - Parental genome and epigenome
 - Environmental exposure and diet
 - Neurological assessment and autism
- Sample paradigm
 - Existing cohorts with outstanding phenotype
 - GWAS
 - Twins

Center for Epigenetics


- School of Medicine
 - Andy Feinberg, Medicine / MBG
 - Jimmy Potash, Psychiatry
 - Sarven Sabunciyan, Pediatrics
- School of Public Health
 - Rafael Irizarry, Biostatistics Hongkai Ji, Ben Langmeade
 - Dani Fallin, Epidemiology
 - Lynn Goldman, Epidemiology
- Kennedy-Krieger
 - Walter Kaufmann, Neurology
- Center for Talented Youth
 - Vicky Milo
 - Lea Ybarra

- Clinical Consortia
 - Raquel Gur, Penn
 - Viswajit Nimgaonkar, Pitt
 - Rodney Go/Perry, UAB
 - David Braff, UCSD
 - Laura Almasy, SFBR
 - Doug Fugman, Rutgers
 - Craig Newschaffer, Drexel


Example: male MZ twins discordant for autism

Male MZ twins discordant for autism

Epigenetic epidemiology: the common disease genetic and epigenetic (CDGE) hypothesis

- Comprehensive epigenomic analysis
 - Genome-wide methylation scan (GWM)
 - Allele-specific expression
 - Chromatin
- Population over time
- Greater subtlety of phenotype
 - Case-control
 - Quantitative
- Environmental exposures
- Epigenetic disruption causes altered phenotypic plasticity generally
- New field of statistical epigenetics

Acknowledgements

• Johns Hopkins

- Rafael Irizarry, Biostatistics
- Christine Ladd-Acosta
- Carolina Montano
- Tiffany Dinkins
- Sarven Sabunciyan, Pediatrics
- Jimmy Potash, Psychiatry
- Peter Murakami
- Akiko Doi
- Dani Fallin, Epidemiology
- Walter Kaufmann, Neurology

- Outside collaborators
 - Rusty Gage, Salk