

Update: Center for Children's Environmental Health and Disease Prevention

UNIVERSITY OF CALIFORNIA, DAVIS UC Davis M.I.N.D. Institute

Isaac N. Pessah, Ph.D.

UC Davis Center for Children's Environmental Health and Disease Prevention

Isaac N. Pessah, Ph.D. - Director Irva Hertz-Picciotto, Ph.D. - Associate Director

- Established in 2001Competitive NIH/EPA Peer review
- Competitive renewal granted 2006

Funded by NIEHS P01ES011269 & EPA R833292/R829388 UC Davis M.I.N.D. Institute

Goal:

To advance scientific knowledge in the field of Autism

- evaluate environmental factors contributing to autism risk
- evaluate gene x environment factors contributing to autism susceptibility
- identify xenobiotic mechanisms of developmental neurotoxicity relevant to ASD

Integrated multidisciplinary approach

Epidemiology

(Project 1/COTC: CHARGE, CHARGE-BACK, MARBLES)

- Clinical and cellular immunology (Project 2: autoanitbodies, cytokines, PBDEs)
- Cellular & mechanism → mouse models
 (Project 3: autoanitbodies, mercury, PCBs, PBDEs
- Analytical chemistry

(Core 3: Mercury, PBDEs, pesticides, oxylipids, vitamin D)

Molecular genomics

(Core 4: transcription arrays, CNV, epigenetics)

- Statistics Core
- Administrative Core

EXTRAPOLATION OF EXPOSURE RISK

UC DAVIS Center for Children's Environmental Health

and Disease Prevention

Mechanism of thimerosal immunotoxicity

Project 3; Core 4

Environmental Health Perspectives 114(7), 1083-91 (2006)

Uncoupling of ATP-Mediated Ca²⁺ Signaling and Dysregulated IL-6 Secretion in Dendritic Cells by Nanomolar Thimerosal

Samuel Goth, Ruth Chu, Jeffery Gregg, Gennady Cherednichenko, Isaac N. Pessah

Project 3

Journal of Immunological Methods 308, 179-191 (2006)

Oxygen tension regulates the in vitro maturation of GM-CSF expanded murine bone marrow dendritic cells by modulating class II MHC expression

Samuel Goth, Ruth Chu, Isaac N. Pessah

Mercury and autism susceptibility

Project 3; Cores 1,3

Toxicological Sciences 101(2), 294-309 (2008)

Low-Level Neonatal Thimerosal Exposure: Further Evaluation of Altered Neurotoxic Potential in SJL Mice

Robert F. Berman, Isaac N. Pessah, Peter R. Mouton, Deepak Mav, Jean Harry

Mercury and autism susceptibility

Projects 1,3; Cores 1,2,3

Environmental Health Perspectives 118(1), 161-166 (2010)

L Blood Mercury Concentrations in CHARGE Study Children with and without Autism

Irva Hertz-Picciotto, Peter G. Green, Lora Delwiche, Robin Hansen, Cheryl Walker, Isaac N. Pessah

Projects 1,2,3; Cores 1,2,3,4

Neurotoxicology Research in press (2010)

Correlations of Gene Expression and Mercury Levels in Blood of Boys with Autism Compared to Typically Developing Controls

Boryana Stamova, Peter G Green, Yingfang Tian, Irva Hertz-Picciotto, Isaac N Pessah, Robin Hansen, Xiaowei Yang, Jennifer Teng, Jeffrey P Gregg, Paul Ashwood, Judy Van de Water, Frank R Sharp

Immunological Factors and Autism Risk

Projects 1,2,3; Cores 1,2,4 Brain, Behavior, and Immunity 23(1):124-33 (2009)

Altered gene expression and function of peripheral Blood natural killer cells in children with autism

Amanda Enstrome, Lisa Lit, Charity Onore, Jeff Gregg, Robin Hansen, Isaac Pessah, Irva Hertz-Picciotto, Judy Van de Water, Frank Sharp, Paul Ashwood

Projects 1,2,3; Cores 1,2 NeuroToxicology 118(1), 161-166 (2010) Autism: Maternally derived antibodies specific for Neuro Toxicology. fetal brain proteins

Daniel Braunschweig, Paul Ashwood, Paula Krakowiak, Irva Hertz-Picciotto, Hansen, Lisa Croen, Isaac Pessah, Judy Van Judy Van de Water

Autism: Maternal IgG from mothers at risk can affect brain development and produce behavioral syndrome in a mouse model (Projects 2,3; Cores 1,2,5)

Non-dioxin-Like Compounds Under the regulatory radar screen?

Non-dioxin-Like Compounds Under the radar screen?

Project 3; Core 3

Toxicology and Applied Pharmacology 237(2):168-77 (2009).

Excitatory and inhibitory synaptic transmission is differentially influenced by two *ortho*-substituted polychlorinated biphenyls in the hippocampal slice preparation

Kyung Ho Kim^a, Salim Yalcin Inan^{b,1}, Robert F. Berman^b, Isaac N. Pessah^{a,*}

Project 3 and new investigator (Lein)

Environmental Health Perspectives 117(3):426-35 (2009)

Developmental Exposure to Polychlorinated Biphenyls Interferes with Experience-Dependent Dendritic Plasticity and Ryanodine Receptor Expression in Weanling Rats

Dongren Yang,^{1*} Kyung Ho Kim,^{2*} Andrew Phimister,² Adam D. Bachstetter,³ Thomas R. Ward,⁴ Robert W. Stackman,⁵ Ronald F. Mervis,³ Amy B. Wisniewski,⁶ Sabra L. Klein,⁷ Prasada Rao S. Kodavanti,⁴ Kim A. Anderson,⁸ Gary Wayman,⁹ Isaac N. Pessah,² and Pamela J. Lein^{1, 2,10}

Common pesticide exposures could further influence already abnormal ratios of excitatory/inhibitory neurons and impact the networks they form

Susceptibility to autism spectrum disorders

From Belmonte and Bourgeron (2006) Nature Neuroscience 9(10):1221-1225

Ca²⁺: A Common Currency of Cell Signaling

All cells utilize spatially and temporally discrete changes in [Ca²⁺]_i to regulate ongoing functions

signal transduction metabolism gene transcription growth migration apoptosis

Pessah Lab, Unpublished

Nanomolar non-coplanar PCB 95 enhances hippocampal excitability *in vitro*

PCBs alters activity dependent dendritic growth In vivo

Yang, et al Env Health Persect. **117**: 426-435 (2009)

 Do PCB-like effects extend to other nondioxin-like compounds of concern to human health?

PBDEs and Autism susceptibility?

Environ. Sci. Technol. 2010, 44, 2648–2653

PBDEs in 2–5 Year-Old Children from California and Associations with Diet and Indoor Environment

MELISSA ROSE,[†] DEBORAH H. BENNETT,^{†,*} ÅKE BERGMAN,[§] BRITTA FÄNGSTRÖM,[§] ISAAC N. PESSAH,[‡] AND IRVA HERTZ-PICCIOTTO[†]

PCBs, PBDEs and non-dioxin-like environmental contaminants

Role in autism risk?

Preliminary evidence of the *in vitro* effects of BDE-47 on innate immune responses in children with autism spectrum disorders

Paul Ashwood a,d,e, Joseph Schauer b,d,e, Isaac N. Pessah c,d,e, Judy Van de Water b,d,e,*

Impairments of mitochondrial bioenergetics in autism?

Scheme of the mitochondrial electron transport chain and its complexes

