Morrisville, NC September 8, 2010

Interagency Autism Coordinating Committee October 22, 2010

David Armstrong, Ph.D.

Chief, Laboratory of Neurobiology Division of Intramural Research National Institute of Environmental Health Sciences Research Triangle Park, NC

Identify novel opportunities to accelerate research on environmental factors in autism.

Planning Committee

Lisa Croen, Kaiser Permanente

Geraldine Dawson, Autism Speaks

Alycia Halladay, Autism Speaks

Cindy Lawler, NIEHS

Isaac Pessah, UC Irvine

IACC

Linda Birnbaum

Geraldine Dawson

Lyn Redwood

Environmental Protection Agency

Thomas Knudsen

Extramural Scientists

Lisa Boulanger Aaron Bowman

Igor Burstyn Danielle Fallin

Carolyn MattinglySheryl Moy

Glenn Rall Jason Richardson

Steven Scherer Caroline Tanner

NIEHS Intramural Scientists

David Armstrong Serena Dudek
Jean Harry Patricia Jensen

National Toxicology Program

Scott Auerbach Ray Tice

Final report will be available on NIEHS website: www.niehs.nih.gov

Questions addressed

- What are the primary challenges to progress?
- How can environmental health sciences contribute?
- What strategies are available for moving forward?

Environment is defined broadly:

Industrial, agricultural chemicals
Microbial toxins, Pathogens
Nutrition, Gut Microbiome
Pharmaceuticals

Challenges

- Lack of chemical exposure data from humans
 - Prospective and international epidemiological studies
 - Brief exposures can have lasting impacts on brain structure
- Lack of cellular and molecular phenotypes in humans
 - Imaging studies of human neural activity
 - Recent genetic association studies
- Lack of animal models and cellular assays for high-throughput screening of toxicants
 - Behavioral correlates in mice; Collaborative Cross
 - Tox 21, a partnership between NTP, EPA, FDA and NCGC
 - Pluripotent stem cells

Lessons learned from studies of other environmentally-mediated disorders

Benefits of considering both broad and narrow phenotypes; understanding the role of comorbidities.

Convergence of genetics and environment on common pathways.

Benefits from using a full range of model organisms.

Advantages of prospective epidemiological studies, including international studies.

Creating and sustaining inter- and trans- disciplinary teams.

Strategies for moving forward

Better exposure data

Prospective epi studies and personal exposure sensors

Better bioinformatics

of genetic and exposure data to identify epigenetic and toxicogenomic influences on suspectibility

Better model systems

to allow mechanistic studies of the effects of toxicants on synapses and immune responses

Better infrastructure

for sharing large data sets and for training and supporting multidisciplinary teams

