Neuroimaging the Full Spectrum of Autism

David G. Amaral, Ph.D. dgamaral@ucdavis.edu

The M.I.N.D. Institute, Dept. of Psychiatry and Behavioral Sciences, California National Primate Research Center (CNPRC) UC Davis

MIND INST

LICDAVIS

Heterogeneity of Causes?

Heterogeneity of Causes?

There are many causes of autism and many types of autism?

Autism₅ not Autism

MIND INSTITUTE UCDAVIS

Heterogeneity of Causes?

Magnetic resonance imaging may provide evidence to help define different types of ASD

MIND INSTITUTE UCDAVIS MRI of Autism Spectrum Disorder Weaknesses of Earlier Studies

- Small sample sizes (dozens instead of hundreds)
- Heterogeneous samples
- Cross-sectional
- Focus on older and higher functioning individuals

There is a scarcity of largescale, longitudinal neuroimaging studies of infants at all severity levels of autism spectrum disorder

Autism is a neurodevelopmental disorder

SNCBI Resources 🖸	How To 🖸				
Publiced.gov US National Library of Medicine National Institutes of Health	PubMed				
	RSS Save search Advanced				
Show additional filters	Display Settings: Summary, 20 per page, Sorted by Recently Added				
Article types More	Results: 18				

Only a small number of papers have focused on children under age 5

Overarching Hypothesis:

When you study the brains of young children with ASD using MRI, you will see different neurophenotypes.

Autism Phenome Project Large-scale multidisciplinary project aimed at identifying subtypes of autism 2 to 3.5 year old children, longitudinal assessments

The MIND Institute Autism Phenome Project (APP) •Children are recruited between 2 and 3 1/2 years of age.

•Study includes all children with autism with very few exclusions.

•Both boys and girls are included.

•Age-matched typically developing children serve as controls.

The MIND Institute Autism Phenome Project (APP)

•The study is longitudinal - children return to the MIND Institute annually for further testing.

•Blood samples are obtained from subjects, siblings and from parents.

Visit 1: Diagnostic Confirmation, Cognitive Testing

Visit 2: Language Assessment, Imitation, Handedness

Visit 3: Medical Exam, 3-D Photograph, Vitals Measurement and Blood Draw

Visit 4: Nighttime MRI

Visit 5: EEG/ERP

Autism Phenome Project Background Number of Families Participating

Autism Phenome Project Background Male and Female Participants

Autism Phenome Project Background Age at Entry into Study

		Male	Female		
	ASD	TD	ASD	TD	
Ν	209	80	42	35	
Average Age (yrs)	2.97	2.86	3.05	2.89	
Std Dev	0.50	0.55	0.43	0.56	

Autism Phenome Project Background

Race

Ethnicity

Autism Severity Score

severity

Score

Developmental Quotient

Verbal DQ

Non-Verbal DQ

Brain Findings

MRI of Young Children

Thomas the Train Mock Session

MRI Practice Kit

MRI of Young Children

MRI Practice Kit

Child-friendly scanning environment Before After

Christine Nordahl, Ph.D and MRI Team

Subjects and Success

	Time 1 38 months M F		Time 2 51 months M F		Time 3 64 months M F	
ASD	155	34	97	21	68	15
TD	59	31	48	25	39	20
Total	279		191		142	
Success Rate 🤇	88%		91%		88%	
Attrition			19%		21%	

Total Brain Measurements

Total cerebral volume (TCV) is enlarged by 6% in boys with ASD

GIRLS

Total brain size is extremely variable in ASD

Autism Onset and Brain Size

Onset status is based on parent report on ADI-R

ASD children who regressed have enlarged brains

Total Cerebral Volume

Head Circumference

ANCOVA – age, DQ, gender as covariates ** p < .01 ANCOVA – age as covariate ** p < .01 ASD-Reg > TD & ASD-EO

Retrospective head circumference shows divergence at 4-6 months

Surface rendering of children's brains

Typical Child Age 31 months TCV 981.96 Autism Early Onset Age 32 months TCV 984.57 Autism Regression Age 30 months TCV 1180.98

Relationship of Total Cerebral Volume to Height

50 TD males Mean TCV/height ratio 26.8, sd 2.11. Cutoff for DM is 29.97

130 ASD males Mean TCV/height ratio 27.6 19/130 ASD-DM (14.6%) 7/130 ASD-micro (5.4%)

On average, ASD kids are not taller than Typical kids

Relationship of Total Cerebral Volume to Height ASD only

– illustrates where the
Mega subgroups fall on height and TCV

One clear neurophenoptype is Disproportionate Megalencephaly (ASD-DM) i.e. the ratio of brain volume to height is 1.5 standard deviations above control mean

This accounts for 15% of our male, ASD cohort

Is the cortex of the brain thicker? or Is there more surface area?

Visualization in Freesurfer

dark grey = sulci; light grey = gyri

Average of cortical thickness of whole brain

Cortical surface area of whole brain

Average of cortical thickness of whole brain

Cortical surface area of whole brain

C. ASD-DM vs TD

E. ASD-DM vs ASD-N

Is there evidence for different fiber connection alterations in the megalencephalic brains?

DTI Tractography

Parallel bundles of fibers have high anisotropy

White-matter can be isolated and investigated

Fiber pathways can be reconstructed with good anatomic validity NeuroImage 88 (2014) 143-154

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

Diffusion properties of major white matter tracts in young, typically developing children

Ryan T. Johnson ^a, Jason D. Yeatman ^b, Brian A. Wandell ^b, Michael H. Buonocore ^c, David G. Amaral ^a, Christine Wu Nordahl ^{a,*}

^a M.I.N.D. Institute, Department of Psychiatry and Behavioral Sciences, University of California at Davis, 2825 50th Street, Sacramento, CA 95817, USA

^b Department of Psychology, Jordan Hall, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA

^c Department of Radiology, UC Davis School of Medicine, University of California, Sacramento, CA 95817, USA

White Matter Abnormalities in Boys with ASD

Anterior Thalamic Radiation

Fiber Tract Abnormalities in ASD males

The Amygdala

Amygdala growth relative to TCV

- 40% of boys with ASD have an abnormally rapid growth of the amygdala
- 20% of boys with ASD have an abnormally slow growth of the amygdala
- 40% of boys with ASD have a normal growth rate of the amygdala

Questions Related to Outcome

- Do early neurophenotypes persist into middle childhood?
- Do early neurophenotypes predict different patterns of autism severity, cognitive function and co-morbid syndromes?
- Is there a pattern of early brain organization that is associated with optimal outcome?

Figure 1 HC and MRI percent difference (%Diff) by age. %Diff values from all HC and MRI studies are plotted by the mean age of the study. The best fitted curve shows the most rapid rates of increased deviation from normal brain size in autism within first ...

Elizabeth Redcay , Eric Courchesne When Is the Brain Enlarged in Autism? A Meta-Analysis of All Brain Size Reports Biological Psychiatry, Volume 58, Issue 1, 2005, 1 - 9

Some low IQ | Few low IQ

Figure 1 HC and MRI percent difference (%Diff) by age. %Diff values from all HC and MRI studies are plotted by the mean age of the study. The best fitted curve shows the most rapid rates of increased deviation from normal brain size in autism within first ...

Elizabeth Redcay , Eric Courchesne When Is the Brain Enlarged in Autism? A Meta-Analysis of All Brain Size Reports Biological Psychiatry, Volume 58, Issue 1, 2005, 1 - 9

Mean Total Cerebral Volume: 3-6 years

IACC 2009 Strategic Plan Question 2: How Can I Understand What is Happening?

Research Opportunity

Multi-disciplinary, longitudinal, biobehavioral studies of children, youths, and adults beginning during infancy that characterize neurodevelopmental and medical developmental trajectories across the multiple axes of ASD phenotype and identify ASD risk factors, subgroups, co-occurring symptoms, and potential biological targets for intervention.

Subject NB

- 9 year old male
- I.Q. 41
- ADOS Total Score 19
- Non-verbal
- Self injurious behavior
- Aggression

NB scans

Time 1 Age 3.7 years

Time 2 Age 4.7 years

Time 4 Age 9.7 years

ACL

Time 1 Age 3.3y

Time 2 Age 4.3y

Time 3 Age 5.6y

Age 12 y, male IQ 58, ADOS total 16

Age 9 y, male IQ 49, ADOS total 17

Age 9 y, female IQ 42, ADOS total 17

LP

OC

Age 10 y, male IQ 41, ADOS total 19

Age 10 y, male IQ 52, ADOS total 17

XC

Age 9 y, female IQ 41, ADOS total 23

Acknowledgments

- The families that have participated in the Autism Phenome Project
- The MIND Institute faculty and staff that have participated in the Autism Phenome Project
 - Financial support from:
 - The MIND Institute
 - The NIH
 - Many donors including the family of Peter Bell.