The Importance of Standardized Early Screening from a Biological and Basic Science Perspective

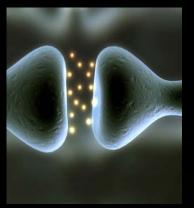
Karen Pierce, Ph.D.

Department of Neurosciences, UCSD

Autism Center of Excellence at: www.autism-center.ucsd.edu

C San Diego

SCHOOL OF MEDICINE

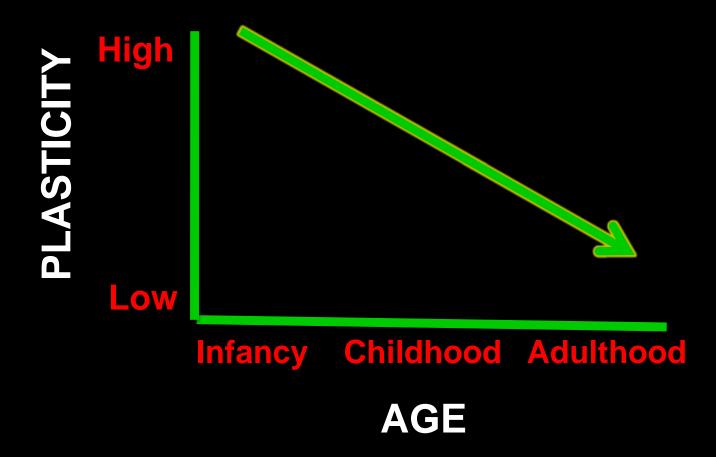

Early Enrichment, Animal Models, and Brain Plasticity

SYNAPSES

Rampon et al., 2000 Turner et al., 2003 Greenough and Chang, Review

CAPILLARY

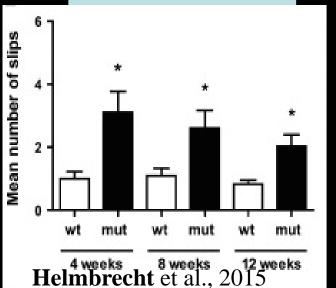
PERFUSION



DENDRITIC BRANCHING

Nilsson et al., 1999 Greenough et al., 1 1986

NEUROGENESIS


Black et al., 1987 Sirevaag et al., 1988 *Kempermann et al, 1997 Brown et al., 2003*

Infancy Childhood Adulthood

ĴΕ

Normal Housing (No Enrichment) :Rat with mutation slips more

CRITICAL PERIODS: Lessons from Bucharest Early Intervention Project Nelson et al., Science, (2007)

<u>SUBJECTS</u>

- 136 infants abandoned at birth in Bucharest, Romania and institutionalized
- 68 Foster Care (FCG)
- 68 Remained Institutionalized (IG)
- 72 Never Institutionalized (NIG) reared at Home with Biological Parents

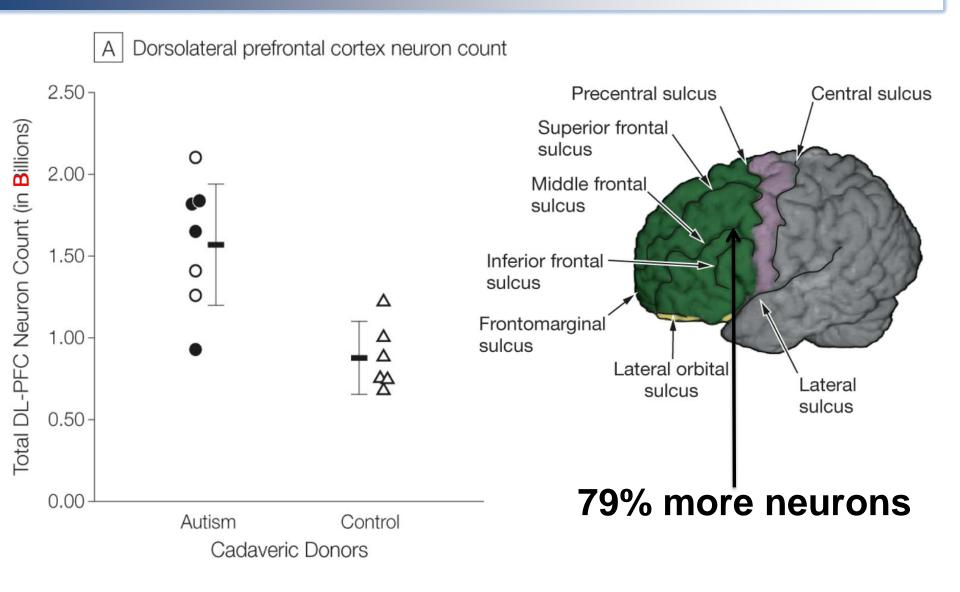
Results: Bucharest Early Intervention Project

GROUP MEAN D.Q.	
Institution (IG)- 42 mo	77.1
Foster Care Group- 42 mo	85.6
Never Institutionalized (NIG) 42 mo	103.4

Foster Care DQ at 42 months BY AGE OF PLACEMENT

AGE AT PLACEMENT	N	MEAN D.Q.
0-18	14	94.9
18-24	16	89.0
24-30	22	80.1
30+	9	79.7

Human Frontal Cortex Neural Development & Circuit Formation (Conel J.L. 1939)


agnosis ISM

Point #1:

The Human Brain Undergoes Massive and Rapid Changes During the First Few Years of Life:

Can we take the chance to miss this window?

When Does Autism Begin?

Courchesne et al., 2011 JAMA

When Does Autism Begin?

We identified regions of tissue with abnormal labeling across multiple layers in autistic cortex

Patches of Focal Cortical Dysplasia: Abnormal Laminar Organization, Migration Defects and Clusters of Disoriented Cells Stoner et al., NEJM, 2013 Point #2: Biologically, autism most likely begins in the womb

Should we wait years to start treatment?

Studying Autism Prospectively: The 1Yr Well-Baby Check-Up Approach – GET SET Early Model

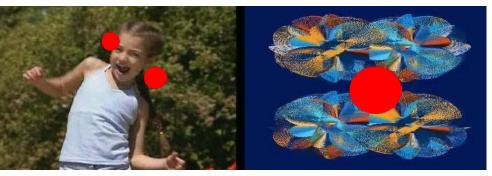
Pierce, et al., (2011) J. Pediatrics

1-Yr. Check-Up Approach

Network of 170 Peds

>60,000 Screened to date

Rationale:

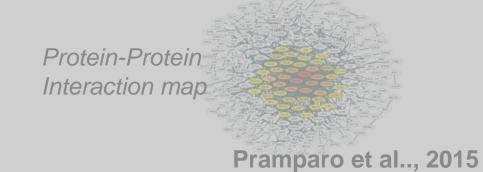

Administer a broad-band CSBS screen to detect all cases of delay at 12months at routine pediatric check up \rightarrow a % of cases will end up with ASD.

Average age Tx Start: 17 months

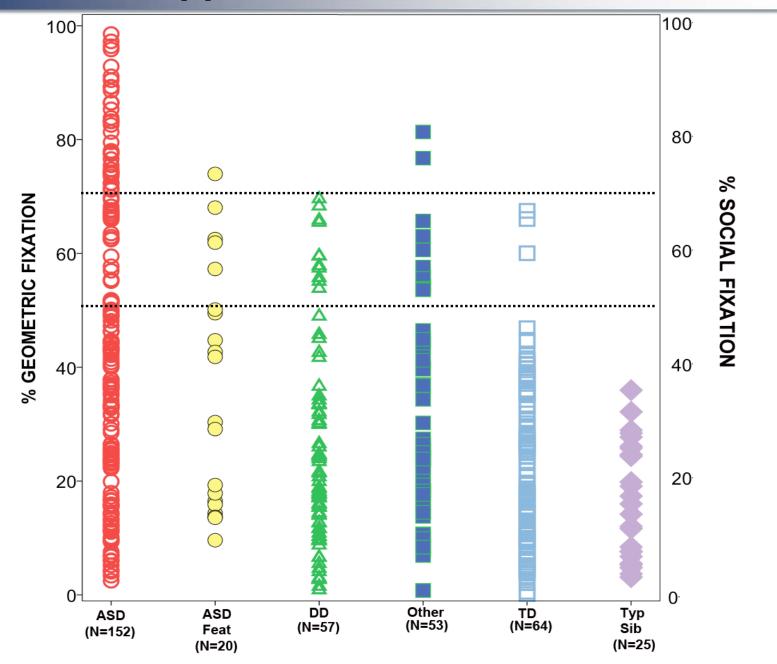
Early Biomarkers of ASD Can Not Be Discovered Without Early Detected Cohorts from General Population

• Eye Tracking Based

Eye Gaze Fixation Patterns


Geo Pref Test

Neuroimaging Based


EEG: Bosl et al., 2011, *BMC Medicine*tional fMRI: Lombardo et al., 2015, *Neuron* Map

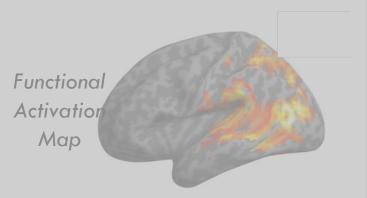
Blood Based

DNA RNA Proteomics

N=444 From a Screened Cohort

Early Biomarkers of ASD Can Not Be Discovered Without Early Detected Cohorts from General Population

• Eye Tracking Based


N=444, specificity for ASD 98%, 12 months, 13 months, 14 months Pierce et al., 2015, Biological Psychiatry

• Neuroimaging Based

fMRI: Lombardo et al., 2015, Neuron

Blood Based

DNA RNA

Proteomics

Protein-Protein Interaction map

Screened Cohorts Reveal Biomarkers of Prognosis

N=103 TYPICAL

Lombardo et al., (2015) Neuron

Point #3:

Standard of Care Screening Facilitates Important Discoveries Regarding Early ASD

THE BENEFITS OF EARLY SCREENING

- 1. Facilitates Tx during the crucial time of life when intervention could have its greatest impact on brain development.
- 2. Makes possible the essential RCT Tx research of screen positive toddlers recommended by the Task Force.
- 3. Is ethically required since the disorder is already in progress, can be detected, and effective treatments available.
- 4. Makes possible the discovery of early biomarkers of the disorder, prognosis, and treatment responsiveness