• Listening to our Daughters: Girls & Women with Autism will Inform Novel Treatments

Kevin Pelphrey

Carbonell Family Professor and Director Autism and Neurodevelopmental Disorders Institute

October 26, 2016

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

SLIDE0

Brain Systems for Social Cognition

Can we see autism's signature in the individual brain?

Classification Analysis

A weak response to biological motion is a marker of autism in boys (but not girls!)

Björnsdotter et al., JAMA: Psychiatry, 2016

Autism Center of Excellence: Girls Network

Milestones	April 1 2016
Target: Total Recruitment	374
Actual: Total Recruitment	454
Actual/Target Ratio: Total Recruitment	121%
Target: Racial Minority Recruitment	65
Actual: Racial Minority Recruitment	110
Actual/Target Ratio: Racial Minority	169%
Recruitment	
Target: Hispanic Ethnicity Recruitment	33
Actual: Hispanic Ethnicity Recruitment	60
Actual/Target Ratio: Hispanic Ethnicity	182%
Recruitment	

Sex differences in brain response to coherent versus scrambled biological motion ASD \bigcirc > ASD \bigcirc

How do we translate basic science into practicable treatments aimed at *target engagement*?

IMPRECISION MEDICINE

For every person they do help (blue), the ten highest-grossing drugs in the United States fail to improve the conditions of between 3 and 24 people (red).

Schork (2015) Nature

Based on published number needed to treat (NNT) figures. For a full list of references, see Supplementary Information at go.nature.com/4dr781.

Pivotal Response Training (PRT)

Change in Behavior: Social Responsiveness Scale (SRS)

Yang et al. (in press) Nature: Translational Psychiatry

Neuro-prediction of treatment response

Yang et al. (in press) Nature: Translational Psychiatry

Changes in brain response to biological motion (post minus pre)

MASD > FASD

Vineland - Socialization Change: PRTvs. Waitlist 3.50 1.82 -1.20 WLCBoys WLCGirls Boys Girls

Can we boost brain responses before treatment, to make treatment work

Intranasal Oxytocin – SocialJudgments

Gordon et al. (2013) Proceedings of the National Academy of Sciences

Linking neural signatures, genes, and behavior in to shape developmental trajectories

Results: fNIRS (LR and HR 3-Month-Old Infants)

Acknowledgments

The Carbonell Family NIMH NICHD NINDS Simons Foundation Autism Speaks Hilibrand Foundation John Merck Scholars Fund Autism Science Foundation

I thank the participants and their families for participating in our research.

I thank my colleagues who make this work so much fun. kevinpelphrey@gwu.edu

The role of genetics and sex-differential biology in risk for autism

Donna Werling, PhD Sanders & State Labs, UCSF October 26, 2016

University of California San Francisco

Autism prevalence is sex-biased

 ~4:1 males:females have a diagnosis of autism spectrum disorder (ASD)

World Health Organization, The global burden of disease: 2004 update (2004).

Autism prevalence is sex-biased

- ~4:1 males:females have a diagnosis of autism spectrum disorder (ASD)¹
- 8 males and 3 females in the 11 cases originally reported by Leo Kanner, 1943²
- Male bias consistent over time and across countries¹

¹Fombonne, 2009, Pediatr Res. ²Kanner, 1943, Nervous Child.

Why study sex bias in ASD from a biological perspective?

Sex appears to be a potent modulator of ASD risk

Males: 1 in 42 diagnosed

Females: 1 in 189 diagnosed

Why study sex bias in ASD from a biological perspective? Sex appears to be a potent modulator of ASD risk

Males: 1 in 42 diagnosed

Females: 1 in 189 diagnosed

Why study sex bias in ASD from a biological perspective?

Female Protective Effect (FPE) Model for ASD = Liability model

Female Protective Effect (FPE) Model for ASD = Liability model

Female Protective Effect (FPE) Model for ASD = *Multiple threshold* liability model

Female Protective Effect (FPE) Model for ASD = *Multiple threshold* liability model

Higher incidence of disruptive, *de novo* variants in ASD females

¹Sanders et al, 2015, Neuron. ²Dong et al, 2014, Cell Rep. ³De Rubeis et al, 2014, Nature.

Siblings of female cases have higher ASD traits than siblings of male cases

Robinson et al, PNAS, 2013

Siblings of female cases have higher ASD traits than siblings of male cases

Robinson et al, PNAS, 2013

FPE model predicts that females respond differently to liability that is sufficient for diagnosis in males

FPE model predicts that females respond differently to liability that is sufficient for diagnosis in males

2. Qualitative:

Females present symptoms differently than males, and are not diagnosed.

FPE model predicts that females respond differently to liability that is sufficient for diagnosis in males

1. Quantitative:

Females are protected and have neurotypical phenotype.

2. Qualitative:

Females present symptoms differently than males, and are not diagnosed.

Hypothesis:

Sex-differential biology contributes to male and female differences in ASD risk and/or symptom presentation

We can use gene expression analysis to identify sex differences that contribute to the FPE

BRAINSPAN ATLAS OF THE DEVELOPING HUMAN BRAIN

Table 1 | Periods of human development and adulthood as d in this study

Period	Description	Age	Star Ka		
1	Embryonic	$4 \text{ PCW} \leq \text{Age} < 8 \text{ PC}$	and the second		
2	Early fetal	$8 \text{PCW} \le \text{Age} < 10 \text{PCW}$			
3	Early fetal	$10 \text{ PCW} \le \text{Age} < 13 \text{ PCW}$			
4	Early mid-fetal	$13 \text{ PCW} \leq \text{Age} < 16 \text{ PCW}$			b 16
5	Early mid-fetal	$16 \mathrm{PCW} \le \mathrm{Age} < 19 \mathrm{PCW}$		LT	L7
6	Late mid-fetal	$19 \text{ PCW} \le \text{Age} < 24 \text{ PCW}$		LI VFC L8	L8
7	Late fetal	$24 \text{ PCW} \leq \text{Age} < 38 \text{ PCW}$		Con the second	
8	Neonatal and early infancy	$0 \mathrm{M}$ (birth) \leq Age $< 6 \mathrm{M}$			VIC
9	Late infancy	$6 \mathrm{M} \leq \mathrm{Age} < 12 \mathrm{M}$		OFC ITC	
10	Early childhood	$1 \mathrm{Y} \leq \mathrm{Age} < 6 \mathrm{Y}$	L3 L4 L5	L5 L4 L3	
11	Middle and late childhood	$6 \mathrm{Y} \leq \mathrm{Age} < 12 \mathrm{Y}$	L2 D L6	L6 L2	
12	Adolescence	$12 \text{Y} \le \text{Age} < 20 \text{Y}$		L7 L1	
13	Young adulthood	$20 \text{Y} \le \text{Age} < 40 \text{Y}$	VFC NO XO	MD MFC	
14	Middle adulthood	$40 \text{Y} \le \text{Age} < 60 \text{Y}$		VIC STO	
15	Late adulthood	$60 \text{Y} \leq \text{Age}$	OFC	TE	

M, postnatal months; PCW, post-conceptional weeks; Y, postnatal years.

Kang, et al., Nature, 2011

There is no evidence of an autosomal gene with XY levels of sexual dimorphism in the brain

There is no evidence of an autosomal gene with XY levels of sexual dimorphism in the brain

Sex-DEX genes identified by permutation approach (Q≤0.05; topranking sex-DEX in ≥2 consecutive developmental periods from same brain region):

- Higher expression in males:
 - 505 protein-coding genes, 129 noncoding transcripts
- Higher expression in females:
 - 442 protein-coding genes, 466 noncoding transcripts

Sex-DEX genes are not enriched for neuronal markers

Male-DEX genes show enrichment for microglial and endothelial cell markers

Male-DEX genes show enrichment for microglial and endothelial cell markers

Male-DEX genes show enrichment for microglial and endothelial cell markers

Developmental window

We observe a relationship between sex-DEX genes and ASD biology

We observe a relationship between sex-DEX genes and ASD biology

Summary

- Intersection of ASD neurobiology and sex-differential neurobiology provides an approach to understand sex bias
- Male-biased expression:
 - Microglial genes
 - Collagen genes and endothelial cell markers
 - Glial genes dysregulated in ASD brain, suggesting a male-sensitization effect
- Validation in independent samples is needed
 - Results are preliminary and based on analysis of a single data set

Looking forward

- Well powered, foundational data sets comparing males and females will be required for:
 - Rigorous validation of sex-differential patterns
 - Thorough investigation of relationships between sex-differential and ASD biology

