Differences in early brain development predict ASD outcome in high risk infants

Heather Cody Hazlett, PhD

Department of Psychiatry & Carolina Institute for Developmental Disabilities University of North Carolina

Meeting of the Interagency Autism Coordinating Committee Bethesda, MD April 2017

Conflicts of Interest

No conflicts of interest

Research funding support:

Why study early brain development in autism?

Early brain overgrowth

'infantile autism' Leo Kanner (1943)

He reported that 5 of the original 11 cases had 'relatively large heads'

Kanner

Head Circumference

- Indirect measure of brain
- Increased head circumference in ASD, present during the first 3 years
- Methodological differences in studies

Prospective/retrospective Samples included/diagnostic criteria Accuracy of measures/QC Normative data

Brain volume increased early in autism

Amaral, Schumann, & Nordahl, 2008

Brain development present in toddlers with ASD

Hazlett et al., Am J Psych, 2011

Increased surface area, but not cortical thickness, in a subset of young boys with autism spectrum disorder.

Ohta, Nordahl, Iosif, Lee, Rogers, & Amaral. <u>Autism Res</u>, 2015.

- Autism Phenome Project
- 115 ASD boys (15% DM), 50 TD boys
- Scanned at age 3
- Found ASD group had greater surface area than TD but not in cortical thickness

Birth to Three

- The first two years of life involve rapid brain growth and development
- Brain development is 'activity dependent'
- Critical periods for development

Typical brain development

Gilmore et al., 2012

Gray matter maturation in 1st year

Gilmore et al., 2012

Gray matter maturation in 2nd year

White matter maturation

Neonate (2 wks)Infant (1 year)Adult

Corpus callosum: DTI (FA) along commissural bundles

Can brain differences be used to detect ASD?

Onset of Autistic Behavior <u>and Brain Enlargement</u> in the Latter Part of the First Year of Life

IBIS Network

- Infants at high-risk for autism ("baby sibs") – younger sibling at increased risk (~20%)
- Seen longitudinally at 3, 6, 12, and 24 months with follow up at 36 m
- Developmental & behavioral assessments and MRI

LETTER RESEARCH

Early brain development in infants at high risk for autism spectrum disorder

Nature 2017

Heather Cody Hazlett^{1,2}, Hongbin Gu¹, Brent C. Munsell³, Sun Hyung Kim¹, Martin Styner¹, Jason J. Wolff⁴, Jed T. Elison⁵, Meghan R. Swanson², Hongtu Zhu⁶, Kelly N. Botteron^{7,8}, D. Louis Collins¹¹, John N. Constantino⁷, Stephen R. Dager^{8,9}, Annette M. Estes^{9,10}, Alan C. Evans¹¹, Vladimir S. Fonov¹¹, Guido Gerig¹², Penelope Kostopoulos¹¹, Robert C. McKinstry¹³, Juhi Pandey¹⁴, Sarah Paterson¹⁵, John R. Pruett Jr⁷, Robert T. Schultz¹⁴, Dennis W. Shaw^{8,9}, Lonnie Zwaigenbaum¹⁶, Joseph Piven^{1,2} & the IBIS Network*

Sample

	LR	HR-neg	HR-ASD	
Ν	117	248	70	
% males	59%	57%	83%	*
Maternal age (yrs)	33.2	33.2	33.3	
Birth weight (lbs)	8.0	7.9	7.9	
Gestational age (wks)	39.3	39.1	38.9	
Age at visit				
6m	6.7	6.6	6.6	
12m	12.7	12.7	12.7	
24m	24.6	24.7	24.6	
Mullen ELC at 24m	109.7	101.8	79.3	*
Vineland ABC at 24m	105.0	101.0	88.1	*

Note: also saw difference in maternal education

Brain overgrowth in HR-ASD

Trajectory of surface area 6-24m

Regions of SA expansion in HR-ASD

A=middle occipital gyrus & cuneus, B=lingual gyrus, C=inferior temporal gyrus, D = middle frontal gyrus

Brain enlargement associated with behavioral features

TBV growth rate & ADOS severity score

- no relationship at 6-12 month interval
- significant (positive) relationship at 12-24 months (p=0.06)
- relationship with social affect score, not repetitive behavior

Relationship to social behaviors also seen in CSBS

• Social deficits at 24 months related to increased growth rate in TBV from 12-24 months

Could early surface area be a biomarker?

Deep Learning Classification of Cortical Data

Martin Styner, Ph.D. & Brent Munsell, Ph.D. UNC College of Charleston

- predicting clinical best estimate diagnosis at 24 months: high risk–ASD versus high risk-negative
- 6 and 12 month scans
- cortical thickness & surface area; sex, total brain volume
- 78 ROI's x 2 hemispheres x 2 time points = 608 data points
- divide 179 (34 HR-ASD, 145 HR-neg) into 10 equal parts (folds) each with a HR-ASD/AR-Neg ratio ~ to total sample
- train on 9 parts/folds and test on 1 part/fold; average correct vs incorrect across all 10 folds

Predicting 24 Month Diagnostic Outcome from 6-12 Month Surface Area

	ASD (n=34)	Non-ASD (n=145)	
Positive Test (ASD)	True Positive (TP) N=30	False Positive (FP) N=7	PPV = 81% TP/(TP + FP)
Negative Test (Non-ASD)	False Negative (FN) N=4	True Negative (TN) N=138	NPV = 97% TN/(FN + TN)
	Total ASD	Total non-ASD	
	sensitivity = 88% TP/ASD	specificity = 95% TN/non-ASD	

features correctly classify ~ 8 of 10 (81%) of infants as ASD

Predicting Later Autism from Early Behavior?

Summary of findings

brain changes are present as early as 6 months of age (before the appearance of the defining features of autism)

the brain in autism **changes over time** (age 6 – 24 months) ... during a critical period when autistic behavior is first unfolding

Clues to mechanisms?

Neocortical neurogenesis and the etiology of autism spectrum disorder (2016). Alan Packer (SFARI)

Some ASD risk genes have role in neurodevelopment

Altered neurogenesis?

Neural progenitor cell proliferation?

Other evidence for early brain differences and ASD outcomes?

Neural circuitry at age 6 months associated with later repetitive behavior and sensory features in autism

JasonWolff

ATR = anterior thalamic radiation; CST = cortico-spinal tract; genu = genu of corpus callosum; MCP = mid-cerebellar peduncle; SCP = superior cerebellar peduncle **HR-ASD** (N=44); **HR-NEG** (N=173)

- DTI tracts at 6, 12 and 24 months
- Behavior: RBS-R, SEQ

Genu FA & Cerebellar pathways at <u>6 months</u> Repetitive behavior & sensory features at 24 months

 no association between genu/cerebellar tracts and ADOS social affect score

Wolff et al, Mol Autism 2017

Examining brain networks

6 Months of Age

Future directions and next steps

- Explore brain-behavior relationships in cortical and subcortical data
- Multi-modal analyses (e.g, sMRI, DTI, bx)
- Individual profiles and domain based trajectories (e.g., RDoC)
- Incorporate genetics and environmental risk data

Infant Brain Imaging Study (IBIS) NIH ACE Network

University of North Carolina

Joe Piven Heather Cody Hazlett Martin Styner Hongbin Gu Chad Chappell Children's Hospital of Philadelphia Robert Schultz Juhi Pandey Ragini Verma Sarah Paterson (Temple)

University of Washington Stephen Dager Annette Estes

Washington University in St Louis Kelly Botteron John Constantino Bob McKinstry John Pruett

<u>University of Alberta</u> Lonnie Zwaigenbaum

<u>University of Minnesota</u> Jed Elison Jason Wolff NY University Guido Geríg

McGill University Alan Evans Louis Collins John Lewis Samir Das Leigh MacIntyre Penelope Kostopoulos

Acknowledgements

Research funding support:

NIH - NICHD; NIH – T32 (CIDD); Autism Speaks; Simons Foundation, Foundation of Hope

Many thanks to the participating families!