Extra-Axial Cerebrospinal Fluid as a Potential Biomarker in Infants Who Develop ASD and Insights into the Role of Early Behavior

Mark Shen, PhD

Postdoctoral Fellow University of North Carolina <u>mark_shen@med.unc.edu</u>

IACC Meeting April 26, 2017

Initial Report of Extra-Axial CSF

2013: Published ini1al finding at UCDavis MIND Ins1tute

BRAIN A JOURNAL OF NEUROLOGY

Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder

Mark D. Shen,¹ Christine W. Nordahl,¹ Gregory S. Young,¹ Sandra L. Wootton-Gorges,² Aaron Lee,¹ Sarah E. Liston,¹ Kayla R. Harrington,¹ Sally Ozonoff¹ and David G. Amaral¹

Total sample: <u>N=55(ASD=10</u>)

Shen et al., 2013

Extra-Axial CSF from 6-24 months

Low-Risk Infant with Normal MRI; ASD-negative

High-Risk Infant with Increased Extra-Axial CSF; Diagnosed with ASD

(Shen et al., 2013, Brain)

4/26/2017

Infant Brain Imaging Study (IBIS) Network

- MRI Scans at 6, 12, 24 months; Diagnosis at 24M
- 4 clinical data collec1on sites
- <u>N=343 infants</u> (804 total scans)

Automatic Segmentation of Extra-Axial CSF:

Mark Shen (mark_shen@med.unc.edu). Do not use without permission. (Shen et al., 2017, Biol Psych)

4/26/2017

HRinfants later diagnosed with ASDhad increased Extra-Axial CSFby 6 months, persistently elevated through 24 months

Covariates: Age, Sex, Site, Total Cerebral Volume *p<0.005 vs. LR-neg, HR-neg Mark Shen (mark_shen@med.unc.edu). Do not use without permission.

(Shen et al., 2017, Biol Psych)

Large ASD group (n=47)

. . .

Examine subgroups based on symptom severity

(Gotham & Lord, 2007)

More pronounced increase of Extra-axial CSF in more severe ASD subgroup

Covariates: Age, Sex, Site, Total Cerebral Volume **p<0.05 vs. all other groups Mark Shen (mark_shen@med.unc.edu). Do not use without permission.

(Shen et al., 2017, Biol Psych) Extra-axial CSF as a <u>single</u> brain measure at 6 months has modest prediction accuracy of ASD diagnosis at 24 months

(Shen et al., 2017, Biol Psych) IBIS 2017 sample:
Overall accuracy =69%
Sensitivity at 6 months = 66%
Specificity at 6 months = 68%

Externally validated in MIND 2013 sample:

- Overall accuracy = 72%
- Sensitivity at 6 months = 80%
- Specificity at 6 months = 67%
- 1. Observable, reliable brain anomaly
- 2. Detectable w/ any structural MRI
- 3. Replication is rare

Xie, 2013 (Science) CSF: Filtration System of Brain lliff, 2012 (Science Transl Med) Louveau, 2015 (Nature) **Continuously absorbed Continuously produced** Turns over every 6 hours Delivers growth factors >>>developing brain >>>Removes inflammatory cytokines, metabolites (Aβ)

Neuroinflammation?

Cytokine accumulation?

4/26/2017 video: medical-animations.com

Current follow-up studies

(unpublished)

1) What is the specificity?

Is it present in monogenic subtypes of ASD? Or in other neurodevelopmental disorders?

2) What is the pathogenic mechanism?

Using mouse models to test hypothesized mechanism of neuroinflammation

3) Are there genetic variants associated with extra-axial CSF?

- DNA in family quads (infant, parents, older ASD sibling)
- Genome-wide SNP genotyping, Whole-exome sequencing, Polygenic risk scores

4) Combined with other brain/behavioral measures to improve prediction?

(Collaborators: David Amaral, Joseph Buxbaum, Dani Fallin, Patrick Sullivan, John Gilmore, Ben Philpot)

4/26/2017

Integrating behavior & early language environment

(Meghan Swanson et al., 2017)

<u>LENArecorder =</u> <u>"Language Pedometer</u>"

-Whole-day recordings @ 9 months -NaturalisBc, home environment

Brain development doesn't occur in a vacuum

Automated detection of "Hyper-vocalizers"

CHILD DEVELOPMENT

Child Development, xxxx 2017, Volume 00, Number 0, Pages 1-14

Naturalistic Language Recordings Reveal "Hypervocal" Infants at High Familial Risk for Autism

Meghan R. Swanson University of North Carolina at Chapel Hill

Ŝ

20% of HR infants were "hyper-vocal" at 9 mos.

- Parents of high- and low-risk infants provided equally rich language environments
- Hyper-vocalizers had lower social babbling (AOSI)
 - Early stereotyped behavior?
- To be continued... 24 month diagnosis?

Example of the added value of behavior:

Hyper-vocalizaBon as an early marker for heterogeneous outcomes?

- Moving beyond dichotomous outcomes (ASD, not ASD) to understanding an early trajectory of heterogeneous outcomes
 - More/less social, language delay

Benefits:

- Scalable, high-throughput, quantifiable, and objective
 - Attributes that are critical for a potential early marker
- Cost-effective:
 - Easily implemented by sending recorders in mail
 - Data is automated

Mul1-dimensional Approach to Early Markers of Au1sm

~Thank you to all of the families and children who participated in the study~

		Funding:	
IBIS Network		NIH T32 HD040127-11A1	
University of North Carolina	CHOP	NIH ACER01 HD055741	
Joe Piven	Robert Schultz	NIH R01 HD05571	
Heather HazleN	Sarah Paterson	NIH R01 HD059854	
MarCn Styner	Juhi Pandey	NIH K99 MH108700	
Meghan Swanson		Au1sm Speaks	
Sun Hyung Kim	University of Alberta	Simons Founda1on	
Hongbin Gu	Lonnie Zwaigenbaum		
Robert Emerson			
Rachel Smith	University of Minnesota	UCDavis MIND Ins1tute:	Mouse models:
Mike Graves	Jed Elison	DavidAmaral	Ben Philpot
Chad Chappell	Jason Wolff	Chris1ne Nordahl	Bin Gu
		Sally Ozonoff	Mai Judson
University of Washington	NYU	Sally Rogers	Sheryl Moy
AnneNe Estes	Guido Gerig	Greg Young	
Dennis Shaw	Clement Vachet		Joseph Buxbaum
Stephen Dager		Constant	Ting Wang
	McGill University, Montréal	<u>Gene1cs:</u>	Carla Golden
Washington University	Alan Evans	Dani Fallin	Hala Harony
Kelly BoNeron	Louis Collins	Joseph Buxbaum Patrick Sullivan	
John ConstanCno	Vladimir Fonov	Patrick Sullivan	
Bob McKinstry	Reza Adalat		
John PrueN	Bruce Pike	LENA:	Schizophrenia:
	Penelope Kostopoulos	Mark Clements	John Gilmore
	Samir Das	James Rehg	Rebecca Knickmeyer
4/26/2017	Leigh MacIntyre	Mark Shen (mark_shen@med.unc.edu).	
		Do not use without permission.	