Extra-Axial Cerebrospinal Fluid as a Potential Biomarker in Infants Who Develop ASD and Insights into the Role of Early Behavior

Mark Shen, PhD

Postdoctoral Fellow
University of North Carolina
mark_shen@med.unc.edu

IACC Meeting
April 26, 2017
Initial Report of Extra-Axial CSF

2013: Published initial finding at UC Davis MIND Institute

BRAIN
A JOURNAL OF NEUROLOGY

Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder

Mark D. Shen,1 Christine W. Nordahl,1 Gregory S. Young,1 Sandra L. Wootton-Gorges,2 Aaron Lee,1 Sarah E. Liston,1 Kayla R. Harrington,1 Sally Ozonoff1 and David G. Amaral1

Total sample: **N=55 (ASD=10)**

Shen et al., 2013
Extra-Axial CSF from 6-24 months

Low-Risk Infant with Normal MRI; **ASD-negative**

High-Risk Infant with Increased Extra-Axial CSF; **Diagnosed with ASD**

4/26/2017

Mark Shen (mark_shen@med.unc.edu).
Do not use without permission.

(Shen et al., 2013, *Brain*)
Infant Brain Imaging Study (IBIS) Network

- MRI Scans at 6, 12, 24 months; Diagnosis at 24M
- 4 clinical data collection sites
- N=343 infants (804 total scans)

Automatic Segmentation of Extra-Axial CSF:

(Shen et al., 2017, Biol Psych)
HR infants later diagnosed with ASD had increased Extra-Axial CSF by 6 months, persistently elevated through 24 months

\[60\] 70 80 90

Age

Extra-Axial Fluid (cm³)

- High Risk-ASD
- High Risk-Negative
- Low Risk-Negative

\[N=47\]
\[N=174\]
\[N=122\]

Tot = 343

\[18\%\] \((d=.54)\)
\[-13\%\] \((d=.48)\)
\[10\%\] \((d=.46)\)

%diff vs. HR-negaBve (Cohen’s d effect size)

Covariates: Age, Sex, Site, Total Cerebral Volume

*p<0.005 vs. LR-neg, HR-neg (Shen et al., 2017, Biol Psych)

Mark Shen (mark_shen@med.unc.edu).
Do not use without permission.
Large ASD group (n=47)

...

Examine subgroups based on symptom severity

(Gotham & Lord, 2007)
More pronounced increase of Extra-axial CSF in more severe ASD subgroup

Covariates: Age, Sex, Site, Total Cerebral Volume

**p<0.05 vs. all other groups
Mark Shen (mark_shen@med.unc.edu).
Do not use without permission.**

(Shen et al., 2017, Biol Psych)
Extra-axial CSF as a single brain measure at 6 months has modest prediction accuracy of ASD diagnosis at 24 months

25-fold cross-validation
Logistic regression (ROC curve)

IBIS 2017 sample:
- Overall accuracy = 69%
- Sensitivity at 6 months = 66%
- Specificity at 6 months = 68%

Externally validated in MIND 2013 sample:
- Overall accuracy = 72%
- Sensitivity at 6 months = 80%
- Specificity at 6 months = 67%

1. Observable, reliable brain anomaly
2. Detectable w/ any structural MRI
3. Replication is rare

(Shen et al., 2017, Biol Psych)
CSF: Filtration System of Brain

- Continuously produced
- Continuously absorbed
- Turns over every 6 hours
- Delivers growth factors to developing brain
- Removes inflammatory cytokines, metabolites (Aβ)

Neuroinflammation?
Cytokine accumulation?

Xie, 2013 (Science)
Iliff, 2012 (Science Transl Med)
Louveau, 2015 (Nature)

4/26/2017
video: medical/animations.com
Mark Shen (mark_shen@med.unc.edu).
Do not use without permission.
Current follow-up studies
(unpublished)

1) **What is the specificity?**
 - Is it present in monogenic subtypes of ASD?
 Or in other neurodevelopmental disorders?

2) **What is the pathogenic mechanism?**
 - Using mouse models to test hypothesized mechanism of neuroinflammation

3) **Are there genetic variants associated with extra-axial CSF?**
 - DNA in family quads (infant, parents, older ASD sibling)
 - Genome-wide SNP genotyping, Whole-exome sequencing, Polygenic risk scores

4) **Combined with other brain/behavioral measures to improve prediction?**

(Collaborators: David Amaral, Joseph Buxbaum, Dani Fallin, Patrick Sullivan, John Gilmore, Ben Philpot)

4/26/2017

Mark Shen (mark_shen@med.unc.edu).
Do not use without permission.
Integrating behavior & early language environment
(Meghan Swanson et al., 2017)

Brain development doesn’t occur in a vacuum

LENA recorder = “Language Pedometer”
- Whole-day recordings @ 9 months
- NaturalisBc, home environment

Mark Shen (mark_shen@med.unc.edu).
Do not use without permission.
20% of HR infants were “hyper-vocal” at 9 mos.

- Parents of high- and low-risk infants provided equally rich language environments

- Hyper-vocalizers had lower social babbling (AOSI)

- Early stereotyped behavior?

To be continued… 24 month diagnosis?
Example of the added value of behavior:

Hyper-vocalization as an early marker for heterogeneous outcomes?

- Moving beyond dichotomous outcomes (ASD, not ASD) to understanding an early trajectory of heterogeneous outcomes
 - More/less social, language delay

- Benefits:
 - Scalable, high-throughput, quantifiable, and objective
 - Attributes that are critical for a potential early marker

- Cost-effective:
 - Easily implemented by sending recorders in mail
 - Data is automated
Multidimensional Approach to Early Markers of Autism

Brain surface area/volume:
- Increased proliferation of progenitor cells

Extra-axial CSF Accumulation
- Inflammatory cytokines

1. Improve prediction in infancy
2. Develop personalized treatments

- Molecular gene 1cs
- Early language/psychological environment

Mark Shen (mark_shen@med.unc.edu).
Do not use without permission.
~Thank you to all of the families and children who participated in the study~

Funding:
NIH T32 HD040127-11A1
NIH ACER01 HD055741
NIH R01 HD05571
NIH R01 HD059854
NIH K99 MH108700
Au1sm Speaks
Simons Foundation
IBIS Network
University of North Carolina
Joe Piven
Heather HazleN
MarCn Styner
Meghan Swanson
Sun Hyung Kim
Hongbin Gu
Robert Emerson
Rachel Smith
Mike Graves
Chad Chappell
University of Minnesota
University of Alberta
Lonnie Zwaigenbaum
University of Washington
AnneNe Estes
Dennis Shaw
Stephen Dager
Washington University
Kelly BoNeron
John ConstanCno
Bob McKinstry
John PrueN
University of North Carolina
Robert Schultz
Sarah Paterson
Juhi Pandey
University of Minnesota
Jed Ellison
Jason Wolff
University of Alberta
Lonnie Zwaigenbaum
IBIS Network
University of North Carolina
Joe Piven
Heather HazleN
MarCn Styner
Meghan Swanson
Sun Hyung Kim
Hongbin Gu
Robert Emerson
Rachel Smith
Mike Graves
Chad Chappell
University of Minnesota
University of Alberta
Lonnie Zwaigenbaum
University of Washington
AnneNe Estes
Dennis Shaw
Stephen Dager
Washington University
Kelly BoNeron
John ConstanCno
Bob McKinstry
John PrueN
University of North Carolina
Robert Schultz
Sarah Paterson
Juhi Pandey
University of Minnesota
Jed Ellison
Jason Wolff
University of Alberta
Lonnie Zwaigenbaum
UC Davis MIND Institute: Mouse models:
David Amaral
Chris1ne Nordahl
Sally Ozonoff
Sally Rogers
Greg Young
Joseph Buxbaum
Ting Wang
Carla Golden
Hala Harony
Gene1cs:
Dani Fallin
Joseph Buxbaum
Patrick Sullivan
LENAPaper: Schizophrenia:
Mark Clements
James Rehg
Rebecca Knickmeyer
4/26/2017 Mark Shen (mark_shen@med.unc.edu).
Do not use without permission.