

ARTICLE

DOL 10.1038/s41467-017-00868-y

OPEN

Cross-tissue integration of genetic and epigenetic data offers insight into autism spectrum disorder

Shan V. Andrews ^{1,2}, Shannon E. Ellis ³, Kelly M. Bakulski ⁴, Brooke Sheppard^{1,2}, Lisa A. Croen ⁵, Irva Hertz-Picciotto^{6,7}, Craig J. Newschaffer^{8,9}, Andrew P. Feinberg^{10,11}, Dan E. Arking^{2,3}, Christine Ladd-Acosta ^{12,10} & M. Daniele Fallin^{2,10,12}

Inter-Agency Autism Coordinating Committee Meeting October 24, 2017

What can we learn by integrating ASD genetic and epigenetic information?

Background:

- Epigenetic variation contributes to gene regulation/expression
- Epigenetic variation is tissue and timing dependent
- Epigenetic variation is in part controlled by genetic variation

Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis

Yun Liu^{1,2,12}, Martin J Aryee^{1,3,12}, Leonid Padyukov^{4,5,12}, M Daniele Fallin^{1,6,7,12}, Espen Hesselberg^{4,5}, Arni Runarsson^{1,2}, Lovisa Reinius⁸, Nathalie Acevedo⁹, Margaret Taub^{1,6}, Marcus Ronninger^{4,5}, Klementy Shchetynsky^{4,5}, Annika Scheynius⁹, Juha Kere⁸, Lars Alfredsson¹⁰, Lars Klareskog^{4,5}, Tomas J Ekström^{5,11} & Andrew P Feinberg^{1,2,6}

What can we learn by integrating ASD genetic and epigenetic information?

Background:

- Epigenetic variation contributes to gene regulation/expression
- Epigenetic variation is tissue and timing dependent
- Epigenetic variation is in part controlled by genetic variation
 - Genetic-epigenetic "maps" can be created, by tissue

meQTL "Maps" Across Tissues

- From joint genotype and methylation data of
 - Peripheral blood (discovery in **SEED**, 2-5 yo)
 - Cord blood (discovery in EARLI, birth)
 - Fetal Brain (Mill, published list)

What can we learn by integrating ASD genetic and epigenetic information?

- 1. Are ASD-associated SNPs enriched for meQTLs <u>for</u> <u>particular tissues</u> including blood?
- 2. Do ASD-associated SNP meQTL targets (CpGs) point to particular biology?
- 3. Do ASD-associated SNP meQTL targets point to genes not previously implicated?

1. Are ASD-associated SNPs enriched for meQTLs <u>for particular</u> <u>tissues</u> including blood?

1. Are ASD-associated SNPs enriched for meQTLs <u>for particular</u> <u>tissues</u> including blood?

ASD P value = 1e-03

✓ YES

meOTL P-value = 1e-08 Fetal brain^a 170 (< 0.000)meOTL FDR = 5% meOTL FDR = 10%meOTL FDR = 1% Peripheral blood^b 1.22 (<0.001) 1.20 (<0.001) 1.23 (<0.001 Cord blood^b 1.14 (0.032) 121(0011) 1.20 (0.023) Lung^a 1.09 (0.343)

Enrichment fold statistics and P values based on 1000 permutations

*LD puring performed with 1000 Genomes CEU samples

^bLD pruning performed with the study-specific genotype data. See Methods for additional details

What can we learn in autism using meQTL information?

- 1. Are ASD-associated SNPs enriched for meQTLs <u>for particular</u> <u>tissues</u> including blood?
 - ✓ YES

	AS	D P value = 1e-03		ASD P value = 1e-04 meQTL P value = 1e-08			
Fetal brain [#]	meQ	TL P-value = 1e-08	503				
	meQTL FDR = 10%	1.70 (<0.001) meQTL FDR = 5%	meQTL FDR = 1%	meQTL FDR = 10%	355 (<0.001) meQTL FDR = 5%	meQTL FDR = 1%	
Peripheral blood ^b Cord blood ^b	1.22 (<0.001) 1.14 (0.032)	1.20 (<0.001) 1.21 (0.011)	1.23 (<0.001) 1.20 (0.023)	1.31 (0.001) 1.13 (0.299)	1.40 (<0.001) 1.10 (0.392)	1.58 (<0.001) 1.10 (0.406)	
Lung ^a	1977	1.09 (0.343)			0.80 (0.301)		

- ✓ Are ASD-associated SNPs enriched for meQTLs for particular tissues including blood? YES
- 2. Do ASD-associated SNP meQTL targets (CpGs) point to particular biology?

Table 3 Gene Ontology terms significantly enriched in multiple tissue types in comparison of ASD-related meQTL targets to meQTL targets generally

Term	Peripheral blood scaled rank ^a	Cord blood scaled rank ^a	Fetal brain scaled rank ^a
Response to interferon-gamma	0.14	0.11	0.11
Positive regulation of relaxation of cardiac muscle	0.20	0.46	0.30
Production of molecular mediator of immune response	0.65	0.22	0.28
Cellular response to interferon-gamma	NA	0.07	0.09
Detection of bacterium	NA	0.18	0.06
Detection of biotic stimulus	NA	0.26	0.04
T-helper 1 type immune response	NA	0.08	0.34
Regulation of interleukin-10 secretion	NA	0.09	0.43
Interferon-gamma production	NA	0.57	0.19
Regulation of interleukin-4 production	NA	0.24	0.62
Interleukin-4 production	NA	0.29	0.60
Interleukin-10 production	NA	0.25	0.74
Tongue development	NA	0.68	0.32
Inflammatory response to antigenic stimulus	NA	0.32	0.81
Endochondral bone growth	NA	0.71	0.53
Antigen processing and presentation of peptide or polysaccharide antigen via MHC class II	0.01	0.05	NA
T-cell costimulation	0.05	0.01	NA
Positive regulation of hormone secretion	0.09	0.04	NA
Antigen receptor-mediated signaling pathway	0.08	0.13	NA
Immunoglobulin production involved in immunoglobulin mediated	0.24	0.03	NA
immune response			
Single organismal cell-cell adhesion	0.23	0.12	NA
Single organism cell adhesion	0.34	0.16	NA
Negative regulation of nonmotile primary cilium assembly	0.16	0.39	NA
Antigen processing and presentation of polysaccharide antigen via	0.02	0.58	NA

- ✓ Are ASD-associated SNPs enriched for meQTLs for particular tissues including blood? YES
- 2. Do ASD-associated SNP meQTL targets (CpGs) point to particular biology?
 - ✓ YES Blood, Cord blood, and Fetal Brain ASD meQTL targets implicate the <u>immune system</u>
 - Consistent with ASD findings to date:
 - Genetic variation does not (generally) point to immune system
 - Expression (and now methylation) results do, as well as many epidemiologic findings

Immune System Implicated by Expression and Methylation

Brain Studies

ARTICLE

Received 28 Sep 2014 | Accepted 3 Nov 2014 | Published 10 Dec 2014

Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism

Simone Gupta¹, Shannon E. Ellis¹, Foram N. Ashar¹, Anna Moes¹, Joel S. Bader^{1,2}, Jianan Zhan², Andrew B. West³ & Dan E. Arking¹

Transcriptomic analysis of autistic brain reveals convergent molecular pathology

Irina Voineagu¹, Xinchen Wang², Patrick Johnston³, Jennifer K. Lowe¹, Yuan Tian¹, Steve Horvath⁴, Jonathan Mill³, Rita M. Cantor⁴, Benjamin J. Blencowe² & Daniel H. Geschwind^{1,4}

ORIGINAL ARTICLE

DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways ^S Nardone, D Sharan Sams, E Reuveni, D Getselter, O Oron, M Karpuj and E Elliott

Blood Studies

Peripheral blood gene expression signature differentiates children with autism from unaffected siblings

S. W. Kong • Y. Shimizu-Motohashi • M. G. Campbell • I. H. Lee • C. D. Collins • S. J. Brewster • I. A. Holm • L. Rappaport • I. S. Kohane • L. M. Kunkel

RESEARCH ARTICLE

Transcriptome Profiling of Peripheral Blood in 22q11.2 Deletion Syndrome Reveals Functional Pathways Related to Psychosis and Autism Spectrum Disorder

Maria Jalbrzikowski¹, Maria T. Lazaro², Fuying Gao¹, Alden Huang², Carolyn Chow¹, Daniel H. Geschwind^{1,3}, Giovanni Coppola^{1,3}, Carrie E. Bearden^{1,4}

- ✓ Are ASD-associated SNPs enriched for meQTLs for particular tissues including blood? YES
- ✓ Do ASD-associated SNP meQTL targets (CpGs) point to particular biology? Immune system
- 3. Do ASD-associated SNP meQTL targets point to genes not previously implicated?

- ✓ Are ASD-associated SNPs enriched for meQTLs for particular tissues including blood? YES
- ✓ Do ASD-associated SNP meQTL targets (CpGs) point to particular biology? Immune system
- 3. Do ASD-associated SNP meQTL targets point to genes not previously implicated?

Peripheral blood

b

Fig. 1 'Expansion' of ASD loci through meQTL mapping in peripheral blood, cord blood, and fetal brain. Each tissue-specific panel presents, from bottom to top: genomic location, gene annotations, SNP locations, SNP-CpG associations, CpG locations. *Light gray* meQTL association lines denote all SNP to CpG associations in that tissue type; *Dark* meQTL association lines denote SNP-CpG associations for ASD-associated SNPs in PGC (*P* value < = 1e-04). **a** Locus at chr8; **b** Locus at chr19. Data are presented for meQTL maps for fetal brain (*top*); cord blood meQTLs (*middle*), and peripheral blood meQTLs (*bottom*). Please note locus coordinates differ from those in Supplementary Data 6 because in this context they encompass the locations of meQTL target CpG sites

а

- ✓ ASD-associated SNPs are enriched for meQTLs <u>for</u> <u>particular tissues</u> including blood?
- ✓ ASD-associated SNP meQTL targets (CpGs) point to particular biology
- ASD-associated SNP meQTL targets point to genes not previously implicated
- Blood-based meQTL information pointed to similar conclusions!
- Some important limitations regarding meQTL lists and ASD SNP list

Summary of SEED I "Omic" Data

SEED 1 Genotype Data										
		# SEED 1 – child			# SEED 1 – mom					
Platform	# SNPs*	ASD**	POP	DD	ASD	POP	DD			
Omni-Quad	>1M	419	555	193	0	0	0			
Affy axiom KP	>700K	173	176	7	0	0	0			
Omni-5M+ exome	>4.5M	13	19	1	301	0	0			
Illumina MEGA	>1.4M	0	0	0	1269***		0			
		605	750	201						
SEED 1 Methylation Data										
Platform	# CpGs	ASD ^{**}	POP	DD						
Illumina 450K	455,664	455	515	0						

* measured. Imputed SNP ~ 8M

** includes possible low functioning cases (n=6)

*** genotype cleaning in-progress; numbers could change slightly

Collaborative Projects To Date

3 ASD GWAS contributions (meta-analysis and replication)
3 ASD EWAS contributions (meta-analysis)
2 non-ASD EWAS contributions (meta-analysis, PACE)
2 multi-omic collaborative projects

SEED-only methods contributions (not ASD focused):2 EWAS / meQTL methodologic contributions1 smoking environmental biomarker paper

Research Group

Chris Ladd-Acosta Heather Volk

Shan Andrews Martha Brucato Shannon Brown **Jason Feinberg Calliope Holingue** Norazlin Kamal-Nor

Kelly Benke Kelly Bakulski (U Mich)

Bo Park Weiyan Li **Brooke Sheppard** Lydia Stewart **April Shu**

Johns Hopkins Biosample Repository Homay Farzadegan (PI)

Funding: CDC, NIEHS, Autism Speaks, NICHD, NIMH, NINDS, HRSA

JHU IGM:

Dan Arking

Shannon Ellis

Acknowledge: **Eilis Hannon**

Jon Mill

ABOUT THE CENTER / CEGS

Andy Feinberg Martin Aryee **Kasper Hansen** Andrew Jaffe Yun Liu Carolina Montano Margaret Taub

Craig Newschaffer (Network PI) Lisa Croen (CA PI) Irva Hertz-Picciotto (UCMIND PI)

1 000

Lisa Croen (CA PI) Julie Daniels (NC PI) Laura Schieve (GA PI) Cordelia Rosenberg (CO PI) Steven Rosenberg (CO PI) Jennifer Pinto-Martin (PA PI) Susan Levy (PA PI) Craig Newschaffer (MD) Li-Ching Lee (MD)