
2021-2022 IACC Strategic Plan for Autism Research, Services, and Policy Draft Chapter 
October 2022 

 

1 
 

Chapter 2: Biology 
What Is the Biology Underlying Autism? 

 
Aspirational Goal: Discover the roles of brain development, cognition, and physiological function in 

autism and its co-occurring conditions to enable the development of effective, targeted interventions 

and societal accommodations that promote positive outcomes across the lifespan. 

Introduction 
Current scientific evidence suggests that autism arises during early development and results in 

differences in brain structure, function, and connectivity. Those brain differences lead to differences in 

areas such as social behavior, learning, communication, sensory perception, and intellectual ability. Over 

the course of the last decades, research has revealed that genes and environmental influences in early 

development are contributing factors. The biological mechanisms by which known gene variations may 

lead to autism by altering the underlying neural circuitry of the brain areas of active investigation. These 

genetic variants are associated with several general functions in neurons (brain cells), including 

regulating when and how genes are expressed and the function of synapses, which are the points of 

connection and communication between neurons. 

However, much remains to be learned about the specific biological mechanisms that lead to autism and 

differences in cognition (including facial processing and emotion regulation), language development and 

communication, motor development, and sensory processing. More research is also needed to better 

understand how the presentation of autism differs across sex and gender. Additionally, studies on the 

relationship of common co-occurring mental and physical health conditions to autism are also needed, 

as are longitudinal studies to better understand the developmental trajectories of autism and co-

occurring conditions. Greater insight and understanding of these molecular, neurological, and 

developmental differences will allow for personalized, targeted interventions that can promote positive 

outcomes for all individuals on the autism spectrum across the lifespan. 

Molecular Mechanisms and Genes Implicated in Autism 
Genetic studies over the past 20 years have identified over 100 genes that contribute to the 

development of autism, though many of these genes also are implicated in other mental health and 

developmental conditions as well.1-3 This number is growing rapidly, and it is likely that over 1,000 genes 

that make smaller contributions to the development of autism will also be identified in the future.2-14 At 

present, the known functions of these genes converge on biological processes that are important for 

neurogenesis (the development of neurons) and synapse formation and communication. However, 

much remains to be learned about the molecular mechanisms that may lead to observable 

characteristics of autism.  

The discovery of gene mutations that cause single-gene disorders that often have autism as one 

component (such as tuberous sclerosis complex, Rett syndrome, Fragile X syndrome, and Phelan 

McDermid syndrome) and the large number of rare spontaneous or de novo mutations that contribute 

to autism have enabled scientists to explore the biological effects of specific proteins and molecular 

pathways in cellular and animal model experiments. This has led to an explosion of research examining 
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how these mutations alter the biology of cells and investigating their effects on neural circuitry and 

behavior. However, given that autism involves distinctly human characteristics, studies using animal 

models may not accurately reflect differences in human biology associated with changes in cognition or 

communication. Therefore, better preclinical models are needed to bridge the evolutionary gap 

between model organisms and humans.  

The ability to take skin or blood cells from people on the autism spectrum, create induced pluripotent 

stem cells (iPSCs), and differentiate these cells into neurons have enabled the study of neural function at 

the cellular level. This technology allows scientists to compare how iPSCs derived from autistic 

individuals differ from those derived from neurotypical individuals15, 16 and study the effects of genetic 

mutations in human brain cells in addition to commonly used transgenic animal models.17 As CRISPR 

gene editing technology becomes more developed, more high-throughput pooled CRISPR screens18, 19 

will also be possible as a means of identifying and validating the relevance of genetic mutations to 

autism. However, experiments involving patient-derived iPSCs are often of small sample sizes, and 

variability and genetic heterogeneity in derived cells can make interpretation of results difficult. While 

more homogenized cell lines can mediate some of the challenges with discerning more subtle 

phenotypes across varied genetic backgrounds, the generalizability of these results will need further 

investigation and validation. A strategy for identifying relevant molecular phenotypes in iPSCs from the 

much more common idiopathic autism also remains a daunting task. Sample sizes for these studies are 

very limited, and varied methodologies across different studies make reproducibility difficult. These are 

challenges that need to be overcome with larger samples and better powered analyses.  

iPSCs also make it possible to grow brain organoids, which are clumps of brain tissue partially organized 

to have some features of the human brain. These partially matured “mini-brains” can be grown in a 

culture dish and can be used to enable the study of the early development of brain structures that 

occurs in utero, as well as the cellular and circuit abnormalities related to autism-liked mutations.20-24 

However, these in vitro studies will introduce a number of variables related to culture conditions, and 

deliberate actions will be required to evaluate reproducibility.  

Brain organoids and iPSCs cannot replace the careful structural and transcriptomic studies of 

postmortem tissues, which have been used to successfully identify differences in gene expression in 

brains of autistic individuals compared to neurotypical brains.25-27 Future advances in single-cell RNA 

sequencing technology will allow for better characterization of these altered patterns of gene 

expression in specific brain cell types, offering the opportunity to precisely associate gene expression 

differences at a cellular level.28 However, the number of available postmortem samples are limited, with 

a heterogeneous mix of characteristics, including sex, age, and medical history, making high-powered 

statistical analyses difficult. Therefore, efforts are still needed to increase the accessibility and diversity 

of brain tissue from well-characterized autism cases. Collaborations such as the Autism BrainNet, the 

Hispano-American Brain Bank of Neurodevelopmental Disorders (CENE), and the National Institutes of 

Health (NIH) NeuroBioBank facilitates the distribution of high-quality, well-characterized human 

postmortem brain tissue for the research community. Enhancing efforts to increase public awareness 

about the value of tissue donation for understanding autism will most effectively advance research on 

the biological mechanisms of autism. Additionally, performing analyses in addition to sequencing and 

storing samples to be used in the future as better technology becomes available can also advance our 

understanding of autism biology.  

https://www.autismbrainnet.org/
https://health.ucdavis.edu/mindinstitute/research/cene-brain-bank/index.html
https://neurobiobank.nih.gov/
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Another remaining challenge is to understand how the effects of hundreds of implicated genes converge 

to cause the common features of autism. In addition to examining rare mutations that lead to high 

probability of autism development, studying more common alleles that confer lower degrees of 

susceptibility may highlight previously undetected gene networks and molecular pathways. Studies of 

multiple genes in parallel and more complete gene ontology data can also help identify additional 

connections. Conversely, the autism genes identified so far often play multiple roles within a cell and 

organism, and this presents a major challenge in translating the discovery of an autism gene to viable 

intervention options. A better understanding of human brain development will provide valuable 

information on where and when to look for autism-related biological changes, which can advance 

needed research to determine how individual genes and their interactions in early life events explain the 

biological basis of the heterogeneity of autism features.  

Structure and Function of Brain Circuits in Autism 
Autism is characterized by atypical patterns in physical brain connections (structure) and how regions 

communicate with each other (function). Brain structure in individuals with autism can be compared to 

typically developing children using advanced magnet resonance imaging (MRI) techniques to measure 

the size and shape of brain regions over time, as well as diffusion tensor imaging (DTI) to examine the 

structures of the major connections between brain regions. Brain circuit function can be investigated 

using non-invasive markers, such as functional magnetic resonance imaging (fMRI), 

magnetoencephalography (MEG), electroencephalography (EEG), and functional near-infrared 

spectroscopy (fNIRS). These studies have shown neurological differences in cognition, executive 

functioning, sensory processing, social communication, and language development.29-31  

Despite a large body of work, challenges remain in fully understanding the neurobiology of autism. 

Current brain imaging studies often report conflicting results and suffer from reproducibility issues. The 

heterogeneous nature of autism presentation and technical limitations of the techniques used means 

large sample sizes and careful statistical analyses are often necessary to obtain truly representative and 

accurate results. Large collaborations and consortiums can help to increase sample size and improve 

rigor and reproducibility.32-35 In addition, females on the autism spectrum, individuals of racial and 

ethnic minorities, minimally speaking individuals, and individuals with higher support needs are often 

underrepresented in brain imaging studies. Increasing the diversity of study participants will improve 

the data quality of brain imaging studies and produce results that are relevant to a broader swath of the 

autism community.  

New technology can also help to overcome some of the logistical issues associated with many brain 

imaging techniques. For example, MRI scans require the patient to be completely still in a confined and 

noisy environment, which causes sensory and other issues for many on the autism spectrum and is not 

representative of the real-world environments. Alternatives such as high-density diffuse optical 

tomography (HD-DOT) are better tolerated, portable, and allow for high-density measurements in more 

naturalistic settings.36, 37 Use of these techniques and developing advances to overcome tolerance and 

sensory issues can improve data quality in brain imaging studies.  

Imaging and electrophysiology studies in model animals such as mice have provided invaluable 

information on the neurobiological and molecular basis of autism. As discussed in the previous section, 

however, because autism impacts uniquely human aspects of social-communicative behavior (such as 

spoken language), developing and measuring analogous phenotypes in animals has proven difficult. In 
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addition, because autism impacts brain regions not developed in some animal species, some neural 

circuitry is not readily amenable to study in model organisms. Therefore, human neuroimaging studies 

remain critical to understanding how autism impacts brain function and structure.  

Lastly, in addition to characterizing how autistic brains differ from neurotypical brains in terms of 

structure and function, it is important to also ask which of these differences contribute to autism 

phenotypes and characteristics and which are simply correlations. For example, a recent review found 

that despite a correlation of between differences in functional connectivity in regions of the brain that 

support complex social interactions and the severity of social symptoms, whether or not these 

connectivity differences cause social challenges still needs to be carefully considered.38 Teasing out 

these causal relationships by examining brain dynamics in the context of different tasks and situations 

can be helpful in developing interventions to reduce the cognitive and social difficulties associated with 

autism.  

Sensory and Motor Differences 
The vast majority of individuals on the autism spectrum experience hypo- or hyper-sensory 

abnormalities, which may have negative impacts on cognitive performance,39 social interactions and 

communication,40, 41 and stress.42, 43 The fifth edition of the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-5) includes sensory characteristics as a diagnostic criterion for autism, highlighting the 

frequency with which autistic individuals experience sensory difficulties. These sensory difficulties occur 

across the core sensory systems, including visual, auditory, gustatory, olfactory, tactile (touch and pain), 

vestibular, and proprioceptive (sense of self-movement and body position) systems, and the severity 

and impact of these differences vary from person to person.44 Extensive research in this area in recent 

years has led to a better understanding of the neurobiological differences within the central nervous 

system that lead to hypo- or hyper-sensitivity.45-50  

However, more work can be done to explore how differences in peripheral nerves and organs such as 

the eye, nose, mouth, ear, and skin can contribute to sensory differences. Additionally, multiple stimuli 

can activate different sensory systems simultaneously and may lead to cognitive, social, and behavioral 

challenges. Research in mice has provided some information on the neurobiological mechanisms that 

lead to multisensory dysfunction in autism.51 It will be important for future research to determine 

whether these findings are translatable to humans and develop interventions to improve the sensory 

experiences of individuals on the autism spectrum. Additionally, sensory challenges occur in a 

heterogeneous manner across the autism spectrum and across the lifespan.52-56 Future research should 

continue to investigate differences in sensory processing in different subgroups within the autism 

community and how these change with development and across the lifespan; this will enable the 

development of more customizable interventions that can meet the sensory needs of individuals of all 

ages across the autism spectrum.  

Differences in motor development and function are also common in individuals on the autism 

spectrum.57 Differences in motor development in infancy can often be detected prior to and is often 

correlated with later development of differences in social skills.58-60 Therefore, a better understanding of 

differences in motor development can lead to biomarkers that allow for earlier detection of autism. 

Additionally, it is not clear what the neurobiological mechanisms are behind atypical motor 

development and how that may contribute to other aspects of autism. Some studies indicate that 

improving motor function can lead to improvements in social skills, suggesting a causal relationship, 
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while other studies do not find the same effect.61 Therefore, it will be important to determine the 

relationship between motor skills and social skills. Finally, more research is needed to understand how 

motor functions develop and change over time to develop interventions that can improve motor 

function across the lifespan so individuals on the autism spectrum can perform essential movements 

and physical activities.  

Cognitive and Communication Differences 
Autism diagnosis is characterized by restricted, repetitive behavior and social and communication 

difficulties. Therefore, cognitive studies of psychological and mental processes, including memory, 

language production and comprehension, problem solving, decision making, and social communication, 

are vitally important for understanding the biology of autism.  

As discussed in the previous section, research so far has highlighted the role of sensory processing in 

cognitive function and social communication, with multiple studies exploring how eye gaze and 

movement impacts facial recognition and social interactions.62-64 In addition, we are now beginning to 

understand the neuronal activities that occur following verbal stimuli and conversation and during 

speech processing.65-67 The role of the cerebellum and other areas of the “social brain” (including the 

prefrontal cortex, amygdala, hippocampus, and limbic system) in cognition and social function has also 

been intensely studied.68, 69 An understanding of how differences in executive functioning affect 

restricted, repetitive behavior and other cognitive difficulties is beginning to emerge, with an imbalance 

in neural excitation and inhibition being a leading hypothesis.70, 71 Aggressive behaviors, self-injurious 

behaviors, and other challenging behaviors exhibited by some individuals on the autism spectrum may 

be due to an attempt to relieve or communicate discomfort or pain associated with sensory difficulties 

or co-occurring conditions,72 with a recent study indicating that common brain circuitry involved in 

emotion, motivation, cognitive processing, and decision making may be involved.73  

However, much remains to be explored about the neurobiology underlying differences in cognition and 

social communication and risk and resilience factors of challenging behaviors. While some regions of the 

brain such as the cerebellum have been definitively shown to be altered and play a role in autism, the 

heterogeneity of cognitive and social phenotypes make it difficult to pinpoint the neuronal and 

molecular changes that cause impairments. Therefore, more studies in model systems are needed to 

better understand the exact nature of neurobiological differences that occur in autism. This knowledge 

will allow for the development of biomarkers for cognitive processes such as memory and problem 

solving to better identify how and what interventions may help individuals on the autism spectrum. 

Additionally, complex cognitive processes likely require communication between multiple brain regions, 

and studies of the brain at the systems level can lead to a more holistic understanding of brain networks 

and connections. Information at the connectome-level may allow for better predictions of cognitive and 

social communication outcomes in autistic individuals. It will also be important to study how cognition, 

social communication, and behaviors may change over time to better support individuals on the autism 

spectrum throughout the lifespan. In particular, research on cognitive and social adaptations of 

individuals on the autism spectrum can help lead to interventions that promote resilience and maximize 

positive outcomes.  
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Immune System and Autism Development 
Current evidence suggests immune differences and neuroinflammation are implicated in the severity 

and pathogenesis of the autism phenotype.74 For example, recent meta-analyses found higher 

concentrations of pro-inflammatory cytokines in individuals on the autism spectrum compared to the 

control group75 and a subset of immune-related genes were significantly associated with autistic traits.76 

Despite many studies demonstrating altered levels of immune biomarkers and abnormal immune 

function in both the peripheral and central nervous system in autism, it is still not clear whether the 

immune system plays a direct role in autism development via alteration of neurodevelopmental 

processes.  

Several recent studies suggest that maternal immunological factors may play a role in the pathogenesis 

of autism during prenatal development. Maternal infection and fever, autoimmune disease, asthma, and 

obesity are all associated with autism development in the offspring.74, 77 However, these results are 

largely based on data from peripheral blood, which may not be representative of changes that occur in 

the brain. Therefore, future research will need to answer whether the immunological changes observed 

cause differences during neurodevelopment or whether differences in neurodevelopment change the 

function and activity of the immune system.  

Microglia are innate immune cells that reside in the central nervous system and are activated in 

response to infection or inflammation. Even in their so-called resting state, they perform critical 

homeostatic functions in the central nervous system.78 Microglial activation has been linked to altered 

brain connectivity in children on the autism spectrum, and pro-inflammatory cytokines and microglial 

phenotypes are also seen in autistic individuals.74 Further investigation of the role of microglia are 

warranted based on our emerging understanding of their role in neurotypical development and 

potential contribution to autism phenotypes. In addition, more studies are needed to identify the roles 

of molecules secreted by immune cells on brain development and function.  

Sex and Gender Differences 
The most recent epidemiological data in the U.S. suggests that autism is about 4 times as prevalent in 

boys and men as compared to girls and women.79, 80 Additionally, autism is more prevalent in gender-

diverse individuals compared to cis-gendered individuals.81, 82 Very little is known about the biological 

mechanisms that contribute to these sex and gender differences. Further work is needed to understand 

the phenotypic differences between males and females and gender diverse individuals on the autism 

spectrum and how these differences should inform the development of screening and diagnostic tools, 

interventions, and services that meet the needs of all autistic individuals, regardless of sex and gender. 

One hypothesis for the male to female autism diagnosis ratio is the existence of the female protective 

effect (FPE), which posits that females would require a greater accumulation of autism-related genetic 

differences to reach the diagnostic threshold. Sequencing and genetic data appear to support this 

hypothesis, with autistic females carrying higher average numbers of rare de novo mutations compared 

to their male counterparts,1, 2, 83 and common and rare variants of autism genes are enriched in mothers 

and unaffected sisters of autistic individuals.1, 2, 84 However, results from family- and inheritance-based 

studies are more conflicting. Some studies show that siblings of autistic females were more likely to 

receive an autism diagnosis compared to siblings of males on the autism spectrum,85 while other results 

show that the relative risk of autism between maternal and paternal lineage is similar, indicating that 
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FPE is likely not the primary mechanism for the sex differences found in autism prevalence.86 Additional 

studies are needed to determine whether the FPE exists and the extent to which such an effect 

contributes to the sex differences seen in autism diagnosis. 

In addition to the FPE, it’s possible that male-specific factors also exist which lowers the diagnostic 

threshold for boys and men. Previous results have shown that autistic males have more rare loss-of-

function mutations on the X chromosome,87 though it is unclear how these variants contribute to the sex 

difference in autism. The impact of sex chromosomes on differences in gene expression between males 

and females and how this may contribute to autism has been understudied in general and needs 

additional attention.  

Sex hormones such as testosterone and estrogen may also contribute to the sex and gender difference 

in autism. Studies have found that estrogen may be a protective factor for autism,88, 89 whereas excess 

testosterone is thought to contribute to autism development.90, 91 Additionally, patients with polycystic 

ovary syndrome (PCOS) were found to have more autistic traits compared to the control group, which 

may be correlated with higher levels of testosterone and luteinizing hormone and lower levels of 

progesterone.92 More research is needed to better understand the role that sex hormones play in 

autism development and what their contributions are to the sex differences seen in autism diagnosis.  

Finally, more studies are needed to investigate the neurological sex differences that occur downstream 

of the genetic and molecular variances. Recent functional connectivity studies found sex differences in 

the cerebellum, which play key roles in sensorimotor, cognitive, and socio-affective processes.93 In 

addition, differences in functional connectivity may explain why autistic females report more 

compensatory behavior (“camouflaging”) compared to their male counterparts.94 Furthermore, brain 

structure and anatomy also differ between males and females.95, 96 However, these studies on the 

neuroanatomy of autism remain rare and limited by small sample sizes. More research is needed to 

better understand how differences in brain functioning and structure can lead to the sex differences 

seen in autism presentation and outcomes.  

Girls and women with autism are often diagnosed later than autistic males and not well-represented in 

research studies, and research to explore the relationship between gender identity and autism 

development and outcomes is just beginning. Better understanding of the genetic, molecular, and 

neurobiological differences between males and females and cis-gendered and gender-diverse 

individuals on the autism spectrum can lead to the development of more accurate biomarkers and 

diagnostic tools, as well as more appropriate interventions and services to maximize the quality of life 

for individuals of all genders and sexes on the autism spectrum.  

Longitudinal Studies 
Autism is a developmental disorder, and life outcomes are extremely heterogeneous. While longitudinal 

studies conducted so far has shown that autism diagnoses at 14 months of age are stable,97 the 

strengths, challenges, and support needs associated with autism change over time.55, 56, 98-100 

Longitudinal studies have shown correlations between motor skills and later development of autism and 

language,101, 102 as well as associations between autism symptoms and sleep problems.103 Studies have 

also shed light on how differences and changes in the brain over time correlate with different subgroups 

and mental and physical health outcomes.104-107 However, much remains to be learned about differences 
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in developmental trajectory and what biological factors and interventions determine better life 

outcomes for individuals on the autism spectrum.  

The brain connectivity changes that underlie autism are not static; their manifestations appear during 

the dramatically dynamic period of brain development and continue to change over the lifespan of the 

individual. Therefore, understanding the biology of autism requires large longitudinal studies to chart 

the trajectory of neural circuits over time, including how they adapt to inborn differences in wiring and 

environmental exposures. Studies are needed that include pregnancy and follow maternal exposures 

and response, fetal development, and brain response to events that occur in utero and perinatally. More 

longitudinal studies that gather brain imaging data from the same set of subjects repeated over an 

extended study period are also needed to enhance our understanding of brain development. 

Furthermore, advances in human imaging technology and longitudinal study designs may provide an 

opportunity to better distinguish true causes from consequences of specific findings by making it 

possible to image brain tissue in live subjects throughout the lifespan. These kinds of studies will require 

standardized acquisition parameters to enable comparability across studies, and robust data sharing 

policies should be in place to enable expert analysis of the data by a variety of scientists. Finally, large, 

organized longitudinal studies across the lifespan are needed to better understand the biology, 

developmental trajectories, and natural history of autism, from prenatal development to early 

childhood and through adulthood. These studies are critical to identify the biological variables that can 

help autistic individuals maximize their strengths and receive the interventions, services, and supports 

they need to overcome challenges throughout the lifespan.  

Co-occurring Conditions 
Autism is associated with a wide range of co-occurring conditions that decrease quality of life for autistic 

individuals. Progress has been made in recent years to better understand the prevalence and underlying 

biology of conditions that commonly co-occur with autism, including gastrointestinal (GI) conditions, 

epilepsy, sleep disorders, and psychiatric disorders. However, more research is needed on the 

underlying causes of these co-occurring conditions and the biological interactions with autism to 

facilitate interventions that can improve the health and well-being of individuals on the autism 

spectrum.  

Gastrointestinal Conditions 

GI symptoms and an inflammatory mucosal pathology has been demonstrated in several studies of 

autism. Children with autism are more likely to experience GI symptoms compared to typically 

developing children or children with other developmental disabilities.108 GI symptoms lower quality of 

life and can cause discomfort, distress, and pain. The presence of GI symptoms has been associated with 

loss of skills and language and communication ability, self-injurious behavior and aggression, sleep 

problems, and sensory issues.108 It is common for individuals on the autism spectrum to eat a restricted 

diet, and studies have shown that the dietary patterns of autistic children differ from that of typically 

developing children.109 It is unclear the extent to which this contributes to the development of GI 

symptoms or if the GI symptoms themselves lead to a more restricted diet. Additionally, while GI 

symptoms were not found to vary with age and were stable over time,108 it is unclear if gender and sex 

play a role in number and severity of GI symptoms experienced and what roles sex hormones may play 

in the process. Most surveys also rely on parents to report symptoms, which may lead to inaccuracies. 
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Improvement and standardization of study tools such as questionnaires and surveys are needed to 

obtain more accurate results that can be compared across studies.   

The role of the gut-brain axis and the microbiome in neurophysiology has been under intense study in 

recent years. The microbiome within the gut plays important roles not only in gut health and 

metabolism but also in immune activation and neuromodulation.110 Given the prevalence of GI co-

morbidities in autistic individuals, it is hypothesized that the microbiome may play a role in autism 

development, and studies of fecal DNA have found certain bacterial clusters overrepresented in children 

on the autism spectrum compared to neurotypical children.110 Additionally, some studies have found 

interventions designed to normalize the gut microbiome improved both GI and autism symptoms.111-113 

However, a recent metagenomics study did not find any association between autism and the gut 

microbiome,114 instead positing that the differences in microbiome may be due to dietary preferences. 

Therefore, more work is still needed to determine what role, if any, the gut microbiome plays in autism 

development.  

Epilepsy 

Epilepsy occurs in 5-46% of individuals on the autism spectrum, and approximately 30% of children with 

epilepsy also have autism.115 Studies have shown that many of the genetic factors for epilepsy and 

autism overlap,115, 116 suggesting that autism and epilepsy may share a common etiology. In addition, 

differences in EEG patterns and perturbations in the neuronal excitatory/inhibitory equilibrium are seen 

in both epilepsy and autism.117 Despite these connections, it is unclear what the causal relationship is 

between autism and epilepsy. For example, epilepsy could be a causal factor in autism development, or 

the neurodevelopmental differences that lead to autism could contribute to the occurrence of epileptic 

seizures. Alternatively, epilepsy and autism may occur on a developmental spectrum in which the 

specific outcome depends upon other factors. A better understanding of the biological underpinnings of 

both epilepsy and autism and the relationship between the two will lead to more targeted and effective 

medical interventions that improve the health and well-being of individuals on the autism spectrum who 

have co-occurring epilepsy.  

Sleep Disorders 

Autism is frequently accompanied by a variety of sleep problems that cause worsened aggression, self-

injurious behavior, anxiety, hyperactivity, and inattention during the daytime.118 Studies indicate the 

prevalence of sleep problems in autism are as high as 50-80%, with initiating and maintaining sleep 

being one of the most common co-occurring clinical disorders.119, 120 Several neurotransmitters, 

including serotonin, melatonin, and gamma-aminobutyric acid (GABA) play vital roles in the 

maintenance of sleep-wake cycles, and abnormal levels of these neurotransmitters have been described 

in autism. Model animals have improved our understanding of how genetic changes that lead to autism 

may also cause sleep disturbances.121 In the future, it will be important to explore if genes that regulate 

sleep may also contribute to autism development. Additionally, more research is needed on how 

confounding variables such as potential sensory issues and GI symptoms may be contributing to 

disrupted sleep to better design interventions that improve sleep quality.  

Ehlers-Danlos Syndromes and Dysautonomia 

Ehlers-Danlos syndromes (EDS) are a group of disorders characterized by hypermobility of the joints, 

skin hyperflexibility, and tissue fragility. EDS patients report chronic pain, fatigue, social withdrawal, and 

anxiety in their daily life.122 Co-occurrence of EDS and autism has been described in the literature since 
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the 1980s.123 More recent studies have shown that children on the autism spectrum have greater joint 

flexibility compared to age- and gender-matched peers124 and generalized joint hypermobility and EDS 

are associated with both autism and attention-deficit/hyperactivity disorder (ADHD).125-127 Many co-

occurring conditions are also shared in both autism and EDS.128 However, it is unclear what the exact 

connection is between EDS and autism and if they share common genetic factors. More research is 

needed on the biological mechanisms and interactions of EDS and autism to facilitate interventions for 

both conditions that can improve health and well-being. 

Dysautonomia is caused by dysfunction of the autonomic nervous system, which regulates nonvoluntary 

bodily functions such as heart rate, blood pressure, breathing, digestion, and perspiration. Symptoms of 

dysautonomia are varied and can include nausea and vomiting, balance problems, dizziness, weakness, 

and visual disturbances. Postural orthostatic tachycardia syndrome or POTS is a form of dysautonomia 

and is characterized by reduced blood volume upon standing leading to lightheadedness and fainting. 

Recent research indicates higher prevalence of dysautonomia in autistic and neurodivergent populations 

and strong associations with EDS.129, 130 However, like with EDS, it is still unclear what the biological 

connection is between autism and dysautonomia. Research is needed to understand the mechanisms of 

dysautonomia and how the disorder may manifest differently in individuals on the autism spectrum to 

develop interventions that can alleviate symptoms and maximize quality of life.  

Mental Health and Psychiatric Conditions  

It has been estimated that approximately 70% of people on the autism spectrum have one or more co-

occurring psychiatric disorder.131 The most common of these conditions are anxiety and mood disorders, 

obsessive compulsive disorder (OCD), ADHD, and oppositional defiant disorder. In addition, depression, 

bipolar disorder, schizophrenia, eating disorders, and suicidal ideation and death by suicide have been 

reported at higher rates in individuals on the autism spectrum compared to the general population. 

Recent studies have also noted that autism is associated with an increased vulnerability for substance 

use disorders.132-135 Many autistic individuals may simultaneously experience multiple co-occurring 

conditions. Current research indicates that these co-occurring conditions may share common genetic, 

epigenetic, and neurological variations.136-139 However, additional research is needed to establish clear 

causal links. In addition, research is needed to better characterize the manifestation of these mental 

health conditions in the context of autism and vice versa to develop improved diagnostic tools and 

interventions to treat co-occurring conditions, in particular depression and suicide. Studies on co-

occurring mental health conditions should also explore the role of sex and gender, intellectual ability, 

and age to determine if these factors mediate the severity of symptoms and provide more information 

on what interventions may be most appropriate for people of all genders and abilities across the 

lifespan.  

Individual and intergenerational trauma also needs to be considered in mental health research of 

autistic individuals. Current data indicates that adverse childhood experiences (ACEs) are associated 

with autism;140 caregivers of autistic youth also experienced higher rates of ACEs compared to caregivers 

of non-autistic youth.141 Brain imaging studies indicate that ACEs may lead to changes in neurological 

functioning, some of which are already known to be associated with autism.142-144 ACEs and other 

traumatic experiences greatly impact mental and emotional well-being, leading to suicidal ideation and 

emotional distress and impacting development into adulthood.145 More research is needed with larger 

studies to understand how different traumas may differently affect diverse individuals and the 
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differences in how acute versus chronic trauma impacts life outcomes for individuals on the autism 

spectrum. Research is also needed on resilience factors, which may include places of refuge and 

identity,145 that may protect individuals from the effects of adverse experiences to better develop 

interventions that can improve health and well-being.  

Research Policy Issues 
A major challenge for the biological sciences is to utilize the most sophisticated technologies that 

produce ever-enlarging data sets while still ensuring the rigor and quality of research. Moving forward, 

the field should embrace policies that promote collaborations and enhance the reproducibility of 

findings and promote transparent reporting of experimental methods, use of common data elements, 

and sharing of data and analysis. Follow-up validation studies are a necessary part of this process, and 

data sharing should be integrated into the design of studies from the beginning. The National Institute 

of Mental Health Data Archive (NDA) platform is a valuable repository for high-quality autism data, 

tools, and methodologies that researchers should leverage to enable re-analysis of data and facilitate 

collaboration to accelerate research progress.  

Larger sequencing, brain imaging, and longitudinal studies require coordination among research centers 

and a shift toward team science across multiple disciplines. Large-scale science initiatives and 

collaborations such as the Autism Biomarkers Consortium for Clinical Trials (ABC-CT), SPARK, the All of 

Us Research Program, and ENIGMA can contribute greatly to our understanding of the biology 

underlying autism. The coordinated collection and analysis of valuable imaging, behavioral, genetic, and 

phenotypic data can also be enhanced by the recruitment of a research workforce that includes not only 

neuroscientists, immunologists, and psychiatrists, but also experts in bioinformatics, machine learning, 

and biomedical engineers.  

Community participatory research and the inclusion of people across the autism spectrum and across 

the lifespan in research development, implementation, and dissemination is crucial to identifying 

practical applications for promoting positive outcomes for autistic individuals and their families. The 

inclusion of autistic people in research validates the unique lived experiences of individuals on the 

autism spectrum and empowers them to contribute to important research on autism. When planning 

studies with human subjects, researchers must ensure that the privacy of participants are safeguarded 

and the data is stored and shared in a secure manner. In addition, researchers must also make certain 

that participants know what data is being collected and how that data will be used. In longitudinal 

studies with participants who start as children, informed consent needs to be established as the 

participants age into adulthood. The results of the study should also be made available to all participants 

in an accessible and timely manner. The dignity, rights, and welfare of the participants should be kept in 

mind throughout the research process. Lastly, the inclusion of individuals of underrepresented minority 

groups as both researchers and study participants will lead to study findings that are more accurate, 

applicable, and representative of the entire autism community.  

Summary 
Significant progress in understanding the biological basis of autism has been made, but considerable 

challenges remain. Though there is a desire to demonstrate the impact of interventions on brain 

function, fundamental research that will allow us to fully understand the importance of alterations in 

brain function and development is still needed. Basic science research on the underlying biology of 

https://nda.nih.gov/
https://nda.nih.gov/
https://medicine.yale.edu/ycci/programsprojects/autism/
https://sparkforautism.org/
https://allofus.nih.gov/
https://allofus.nih.gov/
https://enigma.ini.usc.edu/
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autism continues to be critical to provide the foundation for translational advances that will lead to 

effective interventions to maximize positive outcomes for autistic individuals across the spectrum and 

across the lifespan.  

Recommendations 
RECOMMENDATION 1: Foster research to better understand the processes of early development, 

molecular and neurodevelopmental mechanisms, and brain circuitry that contribute to the structural 

and functional basis of autism.  

Examples: 

• Identify neurological differences that occur in significant groups of individuals on the autism 

spectrum. 

• Understand the differences in cognitive development and communication in individuals on the 

autism spectrum.  

• Understand the role of the immune system and metabolic processes in autism. 

• Understand how atypical sensory and motor functions arise and the role they play in autism.  

RECOMMENDATION 2: Support research to understand the underlying biology of co-occurring 

conditions in autism and to understand the relationship of these conditions to autism.  

Examples: 

• Determine the molecular basis of epilepsy in autism. 

• Determine how GI dysfunction impacts autism-related characteristics.  

• Determine how sleep disorders impacts autism-related characteristics.  

• Determine the relationship of co-occurring psychiatric conditions to autism and their impact on 

the health and well-being of people on the autism spectrum.  

RECOMMENDATION 3: Support large-scale longitudinal studies to answer questions about the 

development of autism from pregnancy throughout adulthood and the natural history of autism 

across the lifespan.  

Examples: 

• Support the creation of large and diverse cohorts, characterized both phenotypically and 

genetically through the collection of autism-relevant exposure data and medical data on the 

parents and child from the prenatal period to adulthood.  

• Support research on how the neurobiology of autistic individuals change throughout the lifespan 

and into older adulthood. 
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