Skip to content
Interagency Autism Coordinating Committee (IACC)
Autism Research Database
Project Element Element Description

Project Title

Project Title

1/2-Somatic mosaicism and autism spectrum disorder

Principal Investigator

Principal Investigator

Walsh, Christopher

Description

Description

Somatic mutations are de novo mutations that occur after fertilization. Once a cell has acquired a somatic mutation, all of its progenitors will also carry that mutation. Thus, if a cell acquires a mutation early in embryonic development, the mutation will be carried by many of the cells in the body. However, if the mutation occurs late in development, then only a few cells might carry it. Thus, it is possible to have mutations that onlyoccur in the brain, or a small region of the brain. It has been known for a while that somatic mutations can cause cancer, and recent studies are showing that somatic mutations are associated with neurodevelopmental disorders resembling autism spectrum disorders (ASDs) both in terms of their high de novo mutation rate and in terms of their associated symptoms such as intellectual disability and epilepsy. We hypothesize that somatic mutations represent a significant cause of (ASDs) because of the high rate of de novo mutations associated with ASDs, the importance of somatic mutations in some genes known to cause ASDs, and the importance of somatic mutations in other developmental brain disorders with features that overlap ASDs. The technical and resource limitations that had prevented a systematic study of the role of somatic mutations in ASDs have now been overcome thanks to 1] Next-Generation Sequencing (NGS), which allows for the deep sequencing of genes and their transcripts with the ability to analyze each sequence, and 2] tissue banks that have collected brain specimens from individuals who had ASD. In this collaborative UO1 we will employ complementary approaches to systematically identify and functionally characterize somatic brain mutations associated with ASD. For causative somatic mutations identified in ASD brain, we will use techniques developed in our labs to examine individual brain cells for the presence of somatic mutation. This will provide us with a map of what regions of the brain, and what cells types in the brain carry these somatic mutations. We will also model and functionally characterize ASD- associated brain mutations in induced pluripotent cells and mice. This study could 1] improve the genetic diagnosis of ASD; by assessing the prevalence of somatic mutations as a cause of ASD, 2] provide a paradigm that may apply to other complex neuropsychiatric diseases (such as schizophrenia), and 3] improve our understanding of the mechanisms underlying ASD by creating a map of brain regions and cell types involved in ASD.

Funder

Funder

National Institutes of Health

Funding Country

Funding Country

United States

Fiscal Year Funding

Fiscal Year Funding

1595121

Current Award Period

Current Award Period

2015-2020

Strategic Plan Question

Strategic Plan Question

Question 2: What is the Biology Underlying ASD?

Funder’s Project Link

Funder’s Project Link

NIH RePORTER Project Page Go to website disclaimer

Institution

Institution

Boston Children's Hospital

Institute Location

Institute Location

United States

Project Number

Project Number

5U01MH106883-02

Government or Private

Government or Private

Government

History/Related Projects

History/Related Projects

N/A

Back to Top