Skip to content
Interagency Autism Coordinating Committee (IACC)
Autism Research Database
Project Element Element Description

Project Title

Project Title

The Impact of Pten Signaling on Neuronal Form and Function

Principal Investigator

Principal Investigator

Luikart, Bryan

Description

Description

Autism Spectrum Disorder (ASD) is a developmental disorder characterized by inappropriate responses to social and sensory stimulation, restricted communication, and stereotyped behavior. Heterozygous mutations in the gene Pten (phosphatase and tensin homolog on chromosome 10) have been identified in 5 to 17% of patients presenting with autism and macrocephaly. Further, experimental deletion of Pten in the mouse brain also causes macrocephaly and deficits in social behavior, suggesting a causative role for Pten dysfunction in the development of ASD. At the cellular level, Pten knockdown results in aberrant growth and increased excitatory synaptic function. Thus, study of Pten fits perfectly with our long-term goal of understanding how synaptic connectivity and activity contribute to complicated cognitive and emotional functions. Our central hypothesis is that Pten dysfunction in autism patients results in aberrant excitation of susceptible neural circuits. Guided by this hypothesis, the specific aims of this proposal will strengthen our understanding of the molecular and neurophysiological basis of ASD. Manipulation of Pten in vivo presents a unique opportunity to examine the neurophysiological basis of autism in a model organism. Our first aim will test the hypothesis that Pten knockdown results in hyperexcitability of a defined circuit. The symptoms of autism are often most severe during development, and decrease in severity during adolescence and adulthood. Identification of endogenous mechanisms by which the adult brain becomes more resistant to genetic insults causing autism could lead to new treatments. Our second aim will test the hypothesis that developing neurons are intrinsically more sensitive to the effects of Pten knockdown. A key gap in our understanding of how Pten contributes to autism exists because we have not examined whether Pten point mutations are equivalent to knockdown. Examining point mutations found in patients will serve as a starting point to identify intra- and intermolecular interactions of Pten relevant to the autism phenotype. For the third aim, we will test the hypothesis that point mutations identified in patients will reslt in cellular phenotypes relevant to the autism model. This proposal will use the innovative approaches of viral-based knockdown and molecular substitution in vivo, coupled with detailed morphological and electrophysiological analyses. The broad goal of this research is to define the molecular and physiological basis of how Pten dysfunction contributes to some forms of autism.

Funder

Funder

National Institutes of Health

Funding Country

Funding Country

United States

Fiscal Year Funding

Fiscal Year Funding

405000

Current Award Period

Current Award Period

2012-2017

Strategic Plan Question

Strategic Plan Question

Question 2: What is the Biology Underlying ASD?

Funder’s Project Link

Funder’s Project Link

NIH RePORTER Project Page Go to website disclaimer

Institution

Institution

Dartmouth College

Institute Location

Institute Location

United States

Project Number

Project Number

4R01MH097949-05

Government or Private

Government or Private

Government

History/Related Projects

History/Related Projects

N/A

Back to Top