Project Detail
Interagency Autism Coordinating Committee (IACC) logo
Office of Autism Research Coordination (OARC) logo

Role of GluK6 in cerebella circuitry development  

This is an individual National Research Service Award for post-doctoral research training, which provides support for promising Fellowship Applicants with the potential to become productive, independent investigators in scientific health-related research fields. The cerebellum is a well-defined region of the brain where active neurogenesis continues perinatally. During cerebellar development, granule cell precursors (GCPs) proliferate superficially in the external granule cell layer (EGL), migrate in a tangential manner parallel to the brain surface, and extend axonal processes before undergoing radial migration to the inner granule cell layer along Bergmann glia (Bglia) processes. Proliferation of GCPs continues in the EGL after birth for several weeks in mice, and for up to two years after birth in humans. Little is known about what cues regulate GCP tangential migration and axon extension, but misregulation of these processes could lead to dysfunctional integration of GCPs into cerebellar circuitry and conditions such as ataxia or autism. The GCP tangential migration and axonal extension necessary for proper cerebellar circuitry may be regulated by glutamate signaling through GluK6 receptors. Importantly, the human gene for GluK6 has been linked to autism. Molecular methods will be used to determine whether GCPs in the EGL express functional kainate receptors, with a particular focus on GluK6. Experiments will determine whether GluK6 receptors orchestrate proper migration and axon extension of GCPs in the EGL. Pharmacology, in vivo electroporation of shRNA, and transgenic mouse models will be employed to perturb GluK6 function and imaging studies will be performed to assess the role of GluK6 in GCP tangential migration and axon extension. Because GluK6 dysfunction may play a role in the etiology of autism spectrum disorders, understanding the role of GluK6 in cerebellum circuitry development is paramount. Project Status
NEW

2010

Funder National Institutes of Health
Fiscal Year Funding $52,106.00
Current Award Period 2010-2012
Project Number 1F32NS067986-01
Principal Investigator Kubera, Cathryn
Received ARRA Funding? No
Strategic Plan Question Question 2: How Can I Understand What Is Happening? (Biology)
Subcategory Molecular Pathways
Strategic Plan Objective 2O. Not specific to Question 2 objectives
Federal or Private? Federal
Institution Yale University
State/Country Connecticut
Web Link 1 Role of GluK6 in cerebella circuitry development (External web link)
Web Link 2 No URL available.
Web Link 3 No URL available.
New! History/Related Projects Not available at this time. This functionality is experimental.